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Atmospheric Models are Enormous.
Number of Observations is Enormous.
Can we get nearly optimal results with tiny ensembles?

What is the main challenge?



A Deterministic Ensemble Kalman Filter (EAKF)
» Observation Space Algorithm Schematic
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A Monte Carlo Ensemble Kalman Filter (EnKF)
» Observation Space Algorithm Schematic
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[-Dimensional Linear Model: X = oXx;

Observe x after each advance, obs. error is Normal(0, 1).
EAKF converges to exact spread, sample of mean (Same as KF).
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[-Dimensional Linear Model: X = oXx;

Observe x after each advance, obs. error is Normal(0, 1).
EnKF 1s Monte Carlo: 4-member ensemble 1s noisy.
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[-Dimensional Linear Model: X = oXx;

Observe x after each advance, obs. error is Normal(0, 1).
EnKF 1s Monte Carlo: 100-member ensemble 1s less noisy.
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[-Dimensional Linear Model: X = oXx;
Observe x after each advance, obs. error is Normal(0, 1).
EnKF error and spread — correct multiplied by ens. size, N.
RMS error surplus, spread shortfall, inversely proportional to N.
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EnKF 101-Member Ensemble
Error as function of linear model size from 1 to 100.
Total error proportional to model size.
Component errors not affected by model size!
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Nonlinear Dynamics and Sampling Error
Lorenz-63. Observations of x+y, y+z, z+x.
Nearly linear.
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Nonlinear Dynamics and Sampling Error
Lorenz-63. Observations of x+y, y+z, z+x.
Mildly non-linear.
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Nonlinear Dynamics and Sampling Error
Lorenz-63. Observations of x+y, y+z, z+x.
Strongly nonlinear.
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Degeneracy, small ensembles, and localization.
100-Dimensional Model, EnKF and EAKF fail for N<101.
But, can localize.
Modity correlation between observations and state variables.
Statistical approach (hierarchical filter):
» There 1s correlation signal and noise,
»Run a group of ensemble filters, differ in initial members,

» Get a sample of correlations,
» Filter them to retain signal.
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Localization for 100-Dimensional Linear Model
Observation y; = 0.7x; + 0.3 x;
Run groups of N-member ensembles.
Keep time mean/median of localization.
Results for observation 50.
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Localization for 100-Dimensional Linear Model
Observation y; = 0.7x; + 0.3 x;
Use time median from groups for single N-member EAKF.
Can make small ensembles work very well.
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Localization get complex in atmospheric models.
Localization for T obs. in mid-troposphere of dry AGCM core.
State variables are meridional wind components.
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Localization get complex in atmospheric models.
Localization for U obs. in mid-troposphere of dry AGCM core.
State variables are temperature.
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Model error reduces need for large ensembles

o If error 1s 1n mean, model will never sample it
o Have to correct errors by additional means.

o If error 1s 1n covariance, more confidence 1s a bad thing.

17



Localization remains biggest challenge/opportunity

o Remote correlations are only thing requiring large ensembles.
o No good theory, even in small, linear systems.

o Become non-linear when filter is applied.

o Gaussian univariate localization 1s sub-optimal.

o Lots of structure in statistically derived localizations.

o These work better, even in simple problems.
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Questions:

o Can we estimate the minimum non-diverging ensemble size?
o Is there an efficient way to find good localization?

o Can small ensembles do nearly perfectly in large models?

GREAT PROBLEMS FOR GRAD. STUDENTS

Note: Non-linear filters would change things a lot, but...
too expensive?
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