The Relation between Ensemble Size and Expected Error in Ensemble Filter Data Assimilation

Jeffrey Anderson
Data Assimilation Research Section
NCAR/IMAGe

AMS Annual Meeting
22 January, 2008

• Atmospheric Models are Enormous.
• Number of Observations is Enormous.
• Can we get nearly optimal results with tiny ensembles?
• What is the main challenge?
A Deterministic Ensemble Kalman Filter (EAKF)

Observation Space Algorithm Schematic
A Monte Carlo Ensemble Kalman Filter (EnKF)

Observation Space Algorithm Schematic

A

Prior Ensemble

Observation Likelihood

Random Draws from Obs.

B

Posterior PDF
1-Dimensional Linear Model: $x_{t+1} = \alpha x_t$

Observe x after each advance, obs. error is Normal(0, 1).

EAKF converges to exact spread, sample of mean (Same as KF).
1-Dimensional Linear Model: \(x_{t+1} = \alpha x_t \)

Observe \(x \) after each advance, obs. error is Normal(0, 1). EnKF is Monte Carlo: 4-member ensemble is noisy.
1-Dimensional Linear Model: $x_{t+1} = \alpha x_t$

Observe x after each advance, obs. error is Normal(0, 1).

EnKF is Monte Carlo: 100-member ensemble is less noisy.
1-Dimensional Linear Model: $x_{t+1} = \alpha x_t$

Observe x after each advance, obs. error is Normal(0, 1).

EnKF error and spread – correct multiplied by ens. size, N.

RMS error surplus, spread shortfall, inversely proportional to N.
EnKF 101-Member Ensemble
Error as function of linear model size from 1 to 100.
Total error proportional to model size.
Component errors not affected by model size!
Nonlinear Dynamics and Sampling Error
Lorenz-63. Observations of $x+y$, $y+z$, $z+x$. Nearly linear.
Nonlinear Dynamics and Sampling Error
Lorenz-63. Observations of x+y, y+z, z+x. Mildly non-linear.
Nonlinear Dynamics and Sampling Error

Lorenz-63. Observations of x+y, y+z, z+x. Strongly nonlinear.

OBS. ERROR VARIANCE 256
Degeneracy, small ensembles, and localization.

100-Dimensional Model, EnKF and EAKF fail for \(N < 101 \).

But, can localize.

Modify correlation between observations and state variables.

Statistical approach (hierarchical filter):

- There is correlation signal and noise,
- Run a group of ensemble filters, differ in initial members,
- Get a sample of correlations,
- Filter them to retain signal.
Localization for 100-Dimensional Linear Model
Observation $y_i = 0.7x_i + 0.3 \ x_i$
Run groups of N-member ensembles.
Keep time mean/median of localization.
Results for observation 50.
Localization for 100-Dimensional Linear Model

Observation $y_i = 0.7x_i + 0.3 \ x_i$

Use time median from groups for single N-member EAKF.
Can make small ensembles work very well.
Localization get complex in atmospheric models. Localization for T obs. in mid-troposphere of dry AGCM core. State variables are meridional wind components.
Localization get complex in atmospheric models. Localization for U obs. in mid-troposphere of dry AGCM core. State variables are temperature.
Model error reduces need for large ensembles

- If error is in mean, model will never sample it
- Have to correct errors by additional means.
- If error is in covariance, more confidence is a bad thing.
Localization remains biggest challenge/opportunity

- Remote correlations are only thing requiring large ensembles.
- No good theory, even in small, linear systems.
- Become non-linear when filter is applied.
- Gaussian univariate localization is sub-optimal.
- Lots of structure in statistically derived localizations.
- These work better, even in simple problems.
Questions:

- Can we estimate the minimum non-diverging ensemble size?
- Is there an efficient way to find good localization?
- Can small ensembles do nearly perfectly in large models?

GREAT PROBLEMS FOR GRAD. STUDENTS

Note: Non-linear filters would change things a lot, but… too expensive?