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• Atmospheric Models are Enormous. 

• Number of Observations is Enormous. 

• Can we get nearly optimal results with tiny ensembles? 

• What is the main challenge? 
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A Deterministic Ensemble Kalman Filter (EAKF) 
 Observation Space Algorithm Schematic 
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A Monte Carlo Ensemble Kalman Filter (EnKF) 
 Observation Space Algorithm Schematic 
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1-Dimensional Linear Model: xt+1 = αxt 
 Observe x after each advance, obs. error is Normal(0, 1). 
 EAKF converges to exact spread, sample of mean (Same as KF). 
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1-Dimensional Linear Model: xt+1 = αxt 
 Observe x after each advance, obs. error is Normal(0, 1). 
 EnKF is Monte Carlo: 4-member ensemble is noisy. 
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1-Dimensional Linear Model: xt+1 = αxt 
 Observe x after each advance, obs. error is Normal(0, 1). 
 EnKF is Monte Carlo: 100-member ensemble is less noisy. 
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1-Dimensional Linear Model: xt+1 = αxt 
 Observe x after each advance, obs. error is Normal(0, 1). 
 EnKF error and spread – correct multiplied by ens. size, N. 
 RMS error surplus, spread shortfall, inversely proportional to N. 
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EnKF 101-Member Ensemble 
 Error as function of linear model size from 1 to 100. 
 Total error proportional to model size. 
 Component errors not affected by model size! 
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Nonlinear Dynamics and Sampling Error 
 Lorenz-63. Observations of x+y, y+z, z+x.  
 Nearly linear. 
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Nonlinear Dynamics and Sampling Error 
 Lorenz-63. Observations of x+y, y+z, z+x.  
 Mildly non-linear. 
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Nonlinear Dynamics and Sampling Error 
 Lorenz-63. Observations of x+y, y+z, z+x.  
 Strongly nonlinear. 
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Degeneracy, small ensembles, and localization. 
 
 100-Dimensional Model, EnKF and EAKF fail for N<101. 
 
 But, can localize. 
 
 Modify correlation between observations and state variables. 
 
 Statistical approach (hierarchical filter): 

 There is correlation signal and noise, 
 Run a group of ensemble filters, differ in initial members, 
 Get a sample of correlations, 
 Filter them to retain signal. 
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Localization for 100-Dimensional Linear Model 
 Observation yi = 0.7xi + 0.3 xi 
 Run groups of N-member ensembles. 
 Keep time mean/median of localization. 
 Results for observation 50. 
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Localization for 100-Dimensional Linear Model 
 Observation yi = 0.7xi + 0.3 xi 

 Use time median from groups for single N-member EAKF. 
 Can make small ensembles work very well. 
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Localization get complex in atmospheric models. 
 Localization for T obs. in mid-troposphere of dry AGCM core. 
 State variables are meridional wind components. 
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Localization get complex in atmospheric models. 
 Localization for U obs. in mid-troposphere of dry AGCM core. 
 State variables are temperature. 
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Model error reduces need for large ensembles 
 

o If error is in mean, model will never sample it 

o Have to correct errors by additional means. 

o If error is in covariance, more confidence is a bad thing. 
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Localization remains biggest challenge/opportunity 
 

o Remote correlations are only thing requiring large ensembles. 

o No good theory, even in small, linear systems. 

o Become non-linear when filter is applied. 

o Gaussian univariate localization is sub-optimal. 

o Lots of structure in statistically derived localizations. 

o These work better, even in simple problems. 
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Questions: 
 

o Can we estimate the minimum non-diverging ensemble size? 

o Is there an efficient way to find good localization? 

o Can small ensembles do nearly perfectly in large models? 

 
GREAT PROBLEMS FOR GRAD. STUDENTS 
 
 
Note: Non-linear filters would change things a lot, but… 
 too expensive? 


