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Multivariate assimilation with DART:

The regression code is trivial:

Seeassim_tools/assim_tools_mod.f90
First 10 executable lines ofsubroutine upda

To generate output from a multivariate Lorenz_
Run./filter in models/lorenz_63/work

Now do matlab diagnostics.
Does multivariate do better?
Be sure to record the error values for compa
Can you identify any obvious performance d
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Multivariate assimilation in Lorenz_63:

What happens if not all state variables are obse

1. Try observing only x and y (ignore z observa

In models/lorenz_63/work
Edit input.nml

Changeobs_sequence_in_name in filter_nm

Execute./filter to produce new assimilation.

Look at the error statistics and time series with 

Record the error and spread values and compa
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Multivariate assimilation in Lorenz_63:

2. Try observing only x (ignore y and z observa

In models/lorenz_63/work
Edit input.nml

Changeobs_sequence_in_name in filter.n
obs_seq.out.x

Execute./filter program to produce a new assim

Look at the error statistics and time series with 

Record the error and spread values and compa

What would happened if we made this into a un
(Change thecutoff back to small value for tes
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Multivariate assimilation in Lorenz_63:

3. Try observing only z (ignore x and y observa
(Change back to large value ofcutoff firs

In models/lorenz_63/work
Edit input.nml

Changeobs_sequence_in_name in filter.n
obs_seq.out.z.

Execute the filter program to produce a new as

Look at the error statistics and time series with 

Record the error and spread values and compa
Dynamics for x and y are symmetric; z can NOT
How do we want filter to handle this?
Does it do what we want in this case?


