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All Error Sources are Expected to Lead to Too 

Increase variance by linearly inflating ensemble
Can do this to PRIOR before computing obs
In OBS. SPACE after computing obs. opera
To POSTERIOR after doing regression.
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Pretty Much the Simplest Low-Order 

1. Single state variable, linear growth around 0.
α=2 in first examp

2. For perfect model, truth is perpetually 0.

3. Variable observed directly with synthetic nois

4. Model error in assimilating model is additive.
γ=0.1 in first exampl

Case 1: obserr variance 1.0, 5 mem
Case 2: same as 1). but obserr variance 10.0 w
Case 3: same as 1). but observed every 12th st
Case 4: same as 1). but 20 member EAKF,γ=0.1.

xt 1+ α xt=

xt 1+ αxt γ+=
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Results for BEST time constant inflation; Prior a

Lowest Prior RMS does NOT mean spread/RM
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Adaptive Inflation for Ensemble Fi

1. For observed variable, have estimate of prior-

Distance, D, from prior mean y to obs. is

Prob. yo is observed givenλ:
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati

R
o

N
t
a

0 1 2 3 4 5 6
0

1

2

Obs. Space Inflation Factor: λ

Prior λ PDF

Likelihood y observed given λ
Posterior

−1 0 1 2 3 4
0

0.2

0.4

0.6

Observation: y

Obs. Likelihood

p λ Yprev yo,( ) p yo λ( ) p λ Yprev( ) normaliza⁄=



4/1/08

tion space.

 space inflation?

int distribution.

ss changes in
n onto state vari-
flation.
Anderson: Balcones Springs 9

State Space Adaptive Inflation

Computations so far adapt inflation for observa

What is relation between observation and state

Have to use prior ensemble observation/state jo
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Spatially varying adaptive inflation alg

Have a distribution forλ at each time for each sta

Use prior correlation from ensemble to determin
prior variance for given observation.

If γ is correlation between state variable i and o

.

Equation for finding mode of posterior is now fu
Analytic solution appears unlikely.

Can do Taylor expansion ofθ aroundλs,i .

Retaining linear term is normally quite accurate
There is an analytic solution to find mode of pro

θ 1 γ λs i, 1–( )+[ ]
2
σprior

2
σobs

2+=
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Prior Adaptive Inflation in Simplest Model w

There is analytic solution for the inflation that m

Adaptive is trying to make spread and RMS agr
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Prior Adaptive Inflation in Simplest Model w
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Prior Adaptive Inflation in Simplest Model w

Adaptive Prior Works Marginally in Simplest Mo
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Why do we need spatially-varying infl

1. Observation density can be spatially-varying.
S.H. vs. N.H. for global.
Near hurricane vortex vs. oceanic enviro
In squall line vs. non-convecting environm

Large enough inflation to do well in one may

2. Sampling error will be larger in densely obse

3. Model error may also be spatially-varying.



4/1/08

P

ge spread).

inds.

 reanalysis.
Anderson: Balcones Springs 15

Adaptive Inflation in Global NW

Model: CAM 3.1 T85L26.

Initialized from a climatological distribution (hu

Observations: Radiosondes, ACARS, Satellite W

Subset of observations used in NCAR/NCEP
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Adaptive Inflation in CAM; 500 hPa T Obs. Spa
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Adaptive Inflation in CAM after 1-Month
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Adaptive Inflation in CAM

1. Largest inflation caused by model error in de

2. RMS reduced, spread increased.

3. Fewer observations rejected.
Note: really need to verify on set of truste

4. Inflation distribution has no time tendency.
Can still cause blow-ups if inflation gets ‘orp

Example: Inflation is larger near Antarctica i
When winter comes, obs. disappear.
Inflation will just stay at previous values.



4/1/08

ation Estimate

 function of time.

limatological value.
Anderson: Balcones Springs 19

Really Need a Model of Time Evolution of Infl

Simple and Naive:

1. Mean inflation value is damped towards 1 as

2. Inflation variance is damped towards some c

3. Example in CAM:
Mean is damped 10% every 6 hours.
Variance is held fixed at 0.6.
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Damped Adaptive Inflation in CAM after 1-M
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Damped Adaptive Inflation in CAM: Obs. S
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Damped Adaptive Inflation

1. Works well in CAM until...
Reanalysis BUFR files had most obs. missin
Then, it blew up.

2. Can this work with a hurricane or thundersto
Observations may be quite variable in time/s
Model error may also be quite variable.
People have been trying this with some suc
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General Thoughts

1. Don’t expect ensembles to have consistent s
Unless you want increased RMS error.
Adaptive aims for consistency, so not optima
Ensembles that look like random samples w

2. When model error dominates lack of spread,
Need to change the general model of inflatio
Work with model error and sampling error se
For model error, model as additive in time?

3. Need trusted observation sets for comparing

Everything shown here is available for play in D
www.image.ucar.edu/DAReS/DART
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Model/Filter Error; Filter Divergence and Varian

1. History of observations and physical system 
2. Sampling error, some model errors lead to ins

3. Naive solution is Variance inflation: just incre

4. For ensemble member i,
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Adaptive Inflation for Ensemble Fi

1. For observed variable, have estimate of prior-

2. Expected(prior mean - observation) =

Assumes that prior and observation are sup
Is it model error or random chance?
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Adaptive Inflation for Ensemble Fi

1. For observed variable, have estimate of prior-

2. Expected(prior mean - observation) =

3. Inflating increases expected separation.
Increases ‘apparent’ consistency between p
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Adaptive Inflation for Ensemble Fi

1. For observed variable, have estimate of prior-

Distance, D, from prior mean y to obs. is

Prob. yo is observed givenλ:
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati

Assume prior is gaussian;
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati
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Adaptive Inflation for Ensemble Fi

Use Bayesian statistics to get estimate of inflati
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Adaptive Inflation for Ensemble Fi

A. Computing updated inflation mean, .

Mode of  can be found analyt

Solving  leads to

This can be reduced to a cubic equation and so

New  is set to the mode.

This is relatively cheap compared to computing

λu

p yo λ( ) p λ Yprev( )

∂ p yo λ( ) p λ Yprev( ) ∂λ 0=⁄

λu



4/1/08

ltering

d point, e.g. .

 and .

.

λu σλ p,+

p λu σλ p,+( )

λu σλ p,+ ) p λu( )⁄
Anderson: Balcones Springs 38

Adaptive Inflation for Ensemble Fi

A. Computing updated inflation variance,

1. Evaluate numerator at mean  and secon

2. Find  so  goes through

3. Compute as  where

σλ u,
2

λu

σλ u,
2 N λu σλ u,

2,( ) p λu( )

σλ u,
2 σλ p,

2 2 rln⁄–= r p(=
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State Space Adaptive Inflation

Computations so far adapt inflation for observa

What is relation between observation and state

Have to use prior ensemble observation/state jo
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Spatially varying adaptive inflation alg

Have a distribution forλ at each time for each sta

Use prior correlation from ensemble to determin
prior variance for given observation.

If γ is correlation between state variable i and o

.

Equation for finding mode of posterior is now fu
Analytic solution appears unlikely.

Can do Taylor expansion ofθ aroundλs,i .

Retaining linear term is normally quite accurate
There is an analytic solution to find mode of pro

θ 1 γ λs i, 1–( )+[ ]
2
σprior

2
σobs

2+=
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Hierarchical Bayesian Methods for Adaptive Fi

1. Localization:
Run an ensemble of ensembles.
Use regression coefficient signal-to-noise ra

2. Inflation:
Use each observation twice.

Once to adjust parameter (inflation) of fil
Second time to adjust mean and varianc


