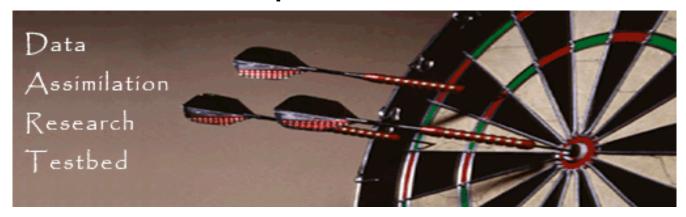
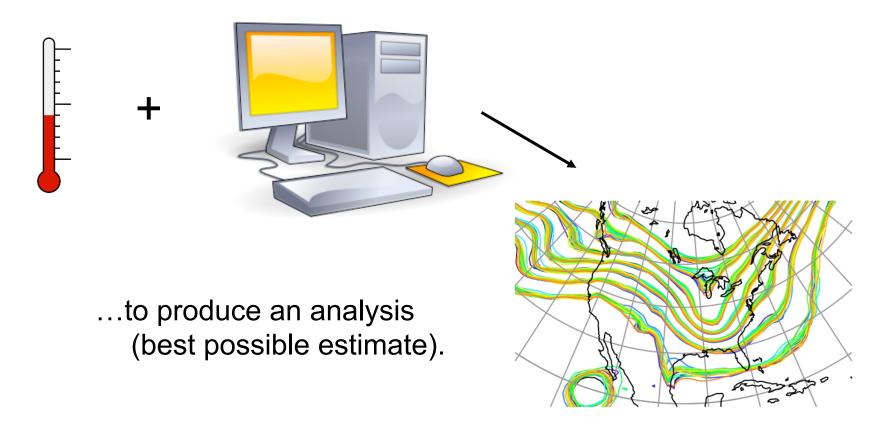
Ensemble Data Assimilation for Large Atmospheric Models



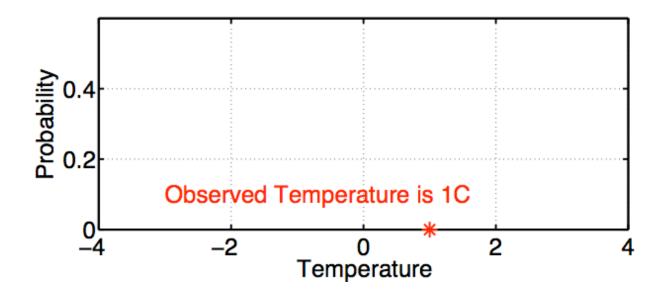
Jeffrey Anderson NCAR Institute for Math Applied to Geophysics

What is Data Assimilation?

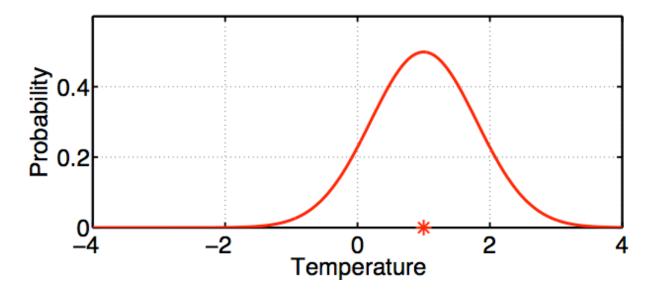
Observations combined with a Model forecast...



An observation has a value (*),

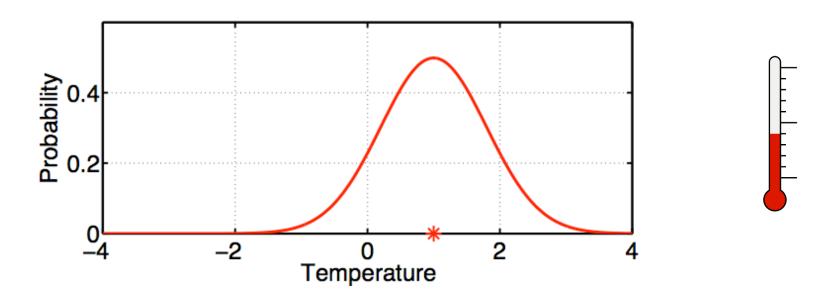


An observation has a value (*),



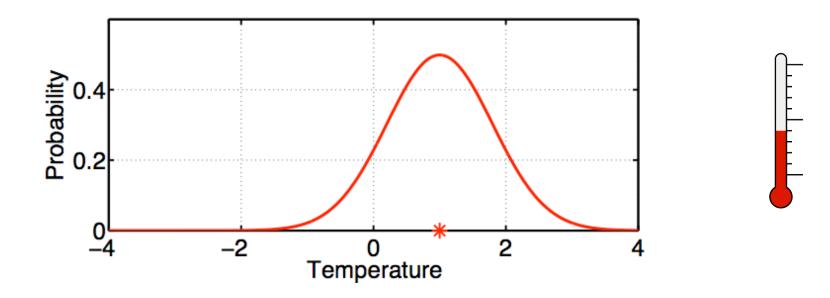
and an error distribution (red curve) that is associated with the instrument.

Thermometer outside measures 1C.



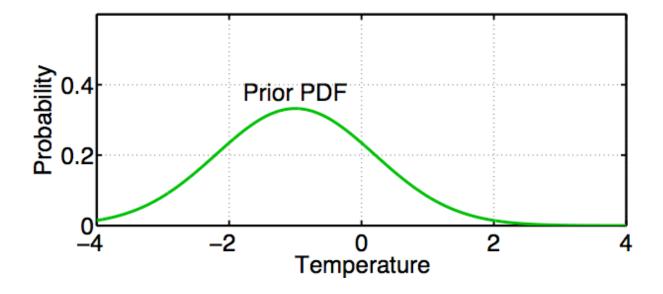
Instrument builder says thermometer is unbiased with +/- 0.8C gaussian error.

Thermometer outside measures 1C.



The red plot is $P(T \mid T_o)$, probability of temperature given that T_o was observed.

We also have a prior estimate of temperature.



The green curve is $P(T \mid C)$; probability of temperature given all available prior information C.

Prior information *C* can include:

- 1. Observations of things besides T;
- 2. Model forecast made using observations at earlier times;
- 3. A priori physical constraints (T > -273.15C);
- 4. Climatological constraints (-30C < T < 40C).

Bayes
Theorem: $P(T \mid T_o, C) = \frac{P(T_o \mid T, C)P(T \mid C)}{P(T_o \mid C)}$

Posterior: Probability of T given observations and Prior. Also called update or analysis.

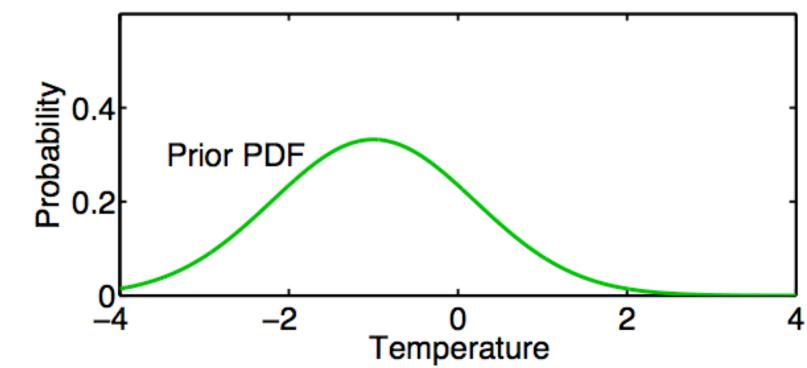
Likelihood: Probability that T_o is observed if T is true value and given prior information C.

Rewrite Bayes as:

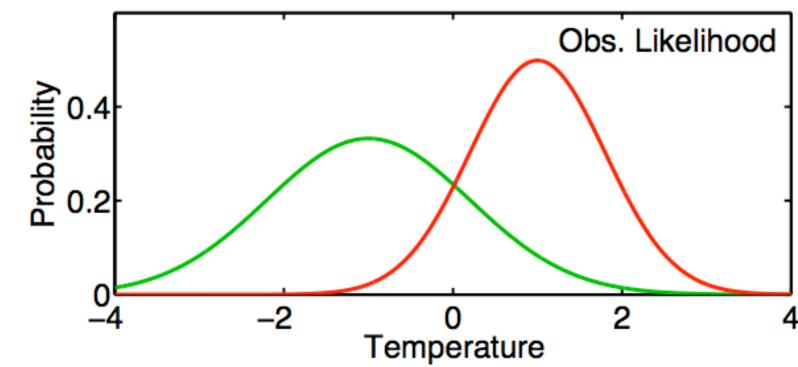
$$\frac{P(T_o \mid T, C)P(T \mid C)}{P(T_o \mid C)} = \frac{P(T_o \mid T, C)P(T \mid C)}{\int P(T_o \mid x)P(x \mid C)dx}$$
$$= \frac{P(T_o \mid T, C)P(T \mid C)}{normalization}$$

Denominator normalizes so Posterior is PDF.

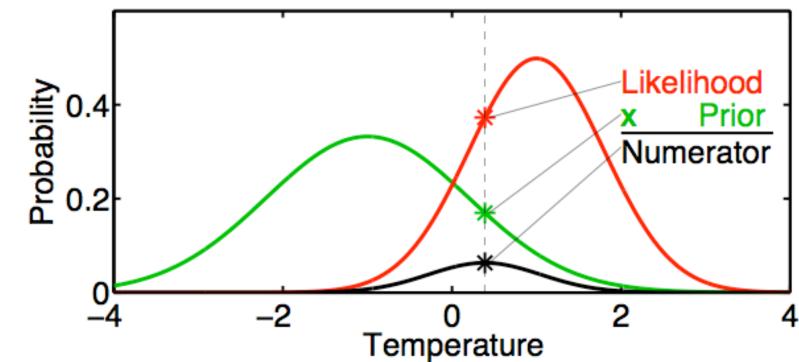
$$P(T \mid T_o, C) = \frac{P(T_o \mid T, C)P(T \mid C)}{normalization}$$



$$P(T \mid T_o, C) = \frac{P(T_o \mid T, C)P(T \mid C)}{normalization}$$

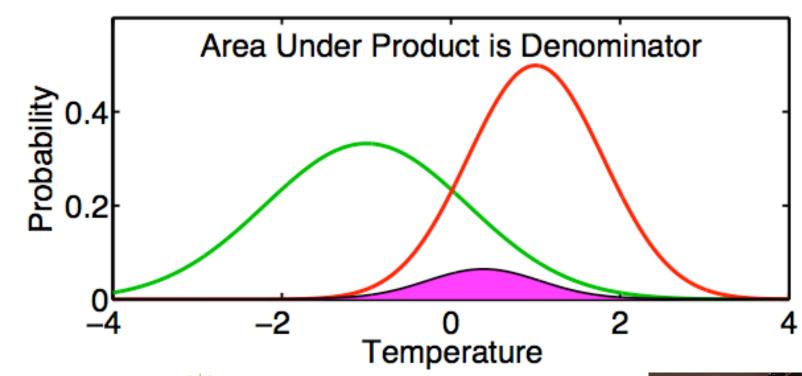


$$P(T | T_o, C) = \underbrace{\frac{P(T_o | T, C)P(T | C)}{P(T_o | T, C)}}_{normalization}$$



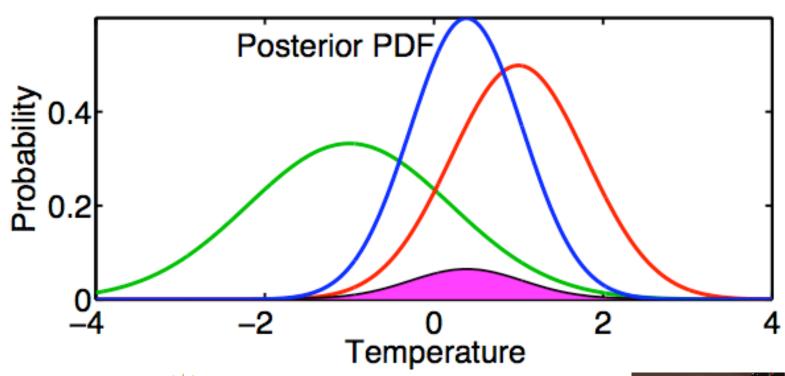
CAS2K9 -- 14 September 2009

$$P(T \mid T_o, C) = \frac{P(T_o \mid T, C)P(T \mid C)}{normalization}$$



CAS2K9 -- 14 September 2009

$$P(T \mid T_o, C) = \frac{P(T_o \mid T, C)P(T \mid C)}{normalization}$$



CAS2K9 -- 14 September 2009

Consistent Color Scheme Throughout Tutorial

Green = Prior

Red = Observation

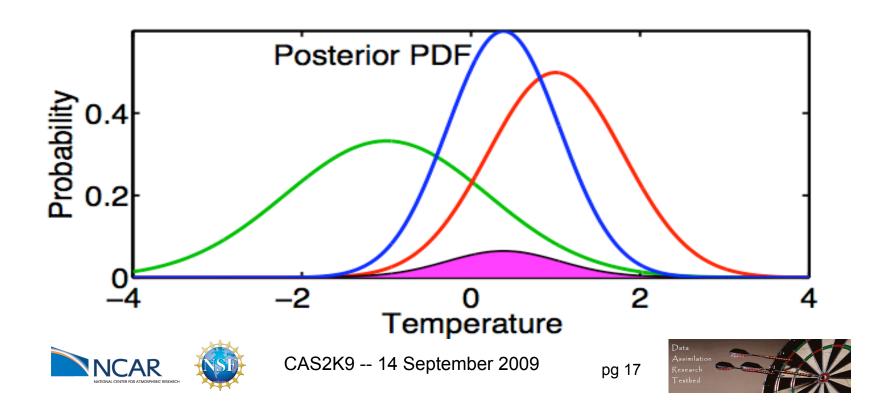
Blue = Posterior

Black = Truth

(truth available only for 'perfect model' examples)

$$P(T | T_o, C) = \frac{P(T_o | T, C)P(T | C)}{normalization}$$

Gaussian Prior and Likelihood -> Gaussian Posterior



For Gaussian prior and likelihood...

Prior

$$P(T \mid C) = Normal(T_p, \sigma_p)$$

Likelihood

$$P(T_o \mid T, C) = Normal(T_o, \sigma_o)$$

Then, Posterior

$$P(T \mid T_o, C) = Normal(T_u, \sigma_u)$$

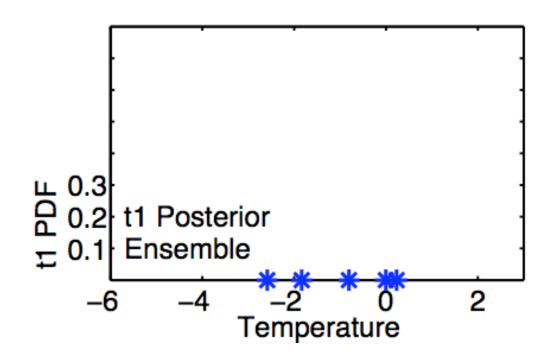
$$\sigma_u = \sqrt{\left(\sigma_p^{-2} + \sigma_o^{-2}\right)^{-1}}$$

With

$$T_u = \sigma_u^2 \left[\sigma_p^{-2} T_p + \sigma_o^{-2} T_o \right]$$

A One-Dimensional Ensemble Kalman Filter: **Model Advance**

Use a sample (ensemble) to represent a posterior distribution.



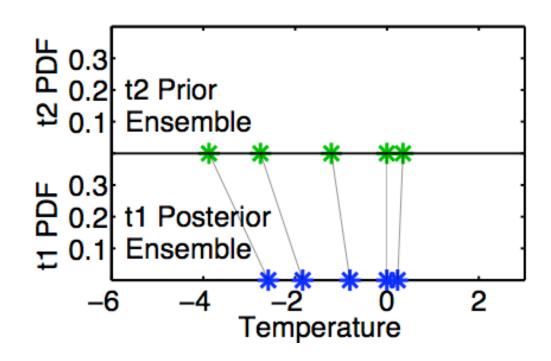
A One-Dimensional Ensemble Kalman Filter: Model Advance

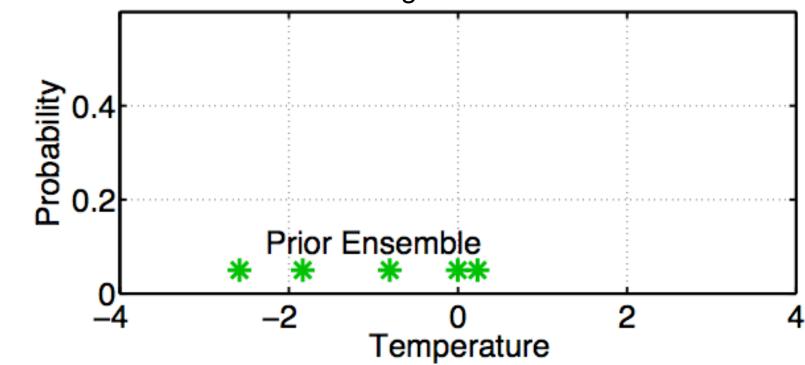
If posterior ensemble at time t₁ is

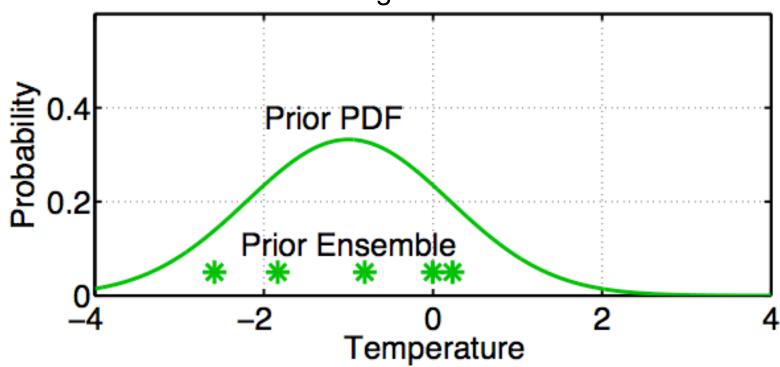
$$T_{1,n}, n = 1, ..., N,$$

advance each member to time t₂ with a linear model,

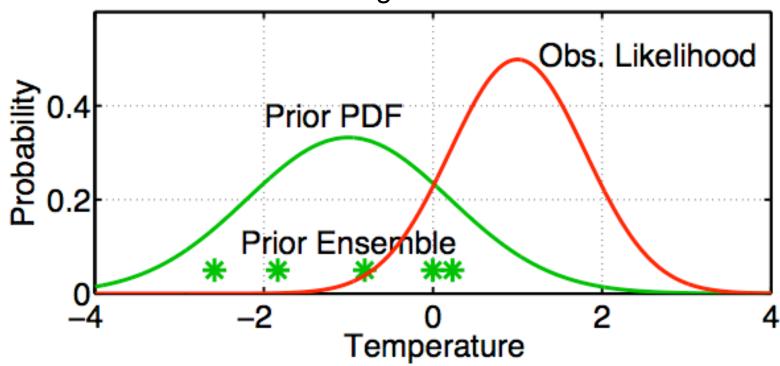
$$T_{2,n} = L(T_{1,n}) \quad n = 1, ... N$$
.



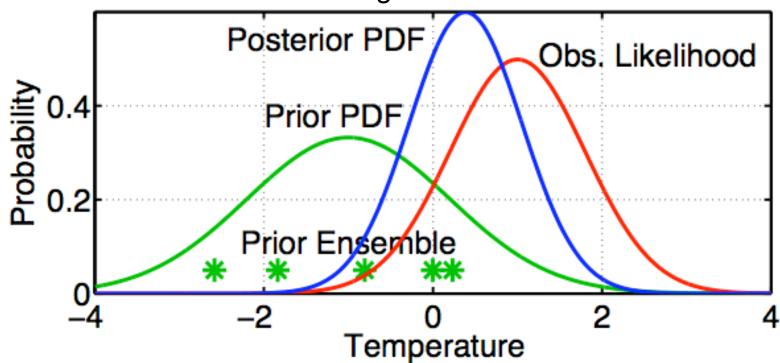




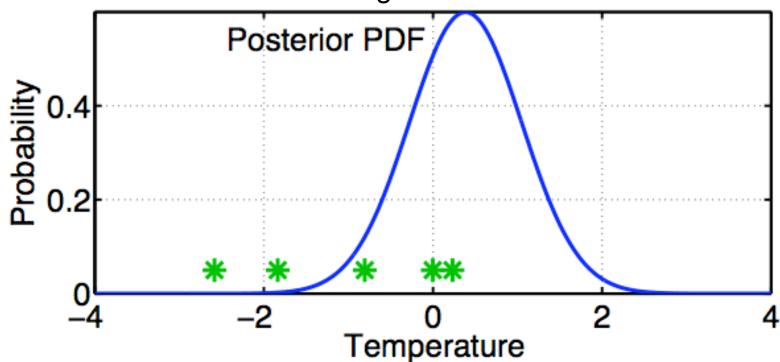
Fit a Gaussian to the sample.



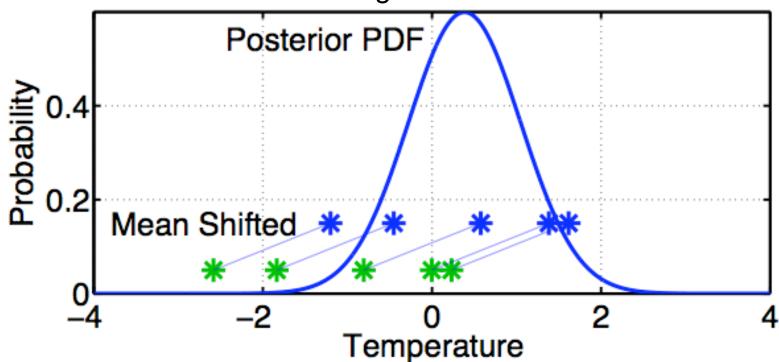
Get the observation likelihood.



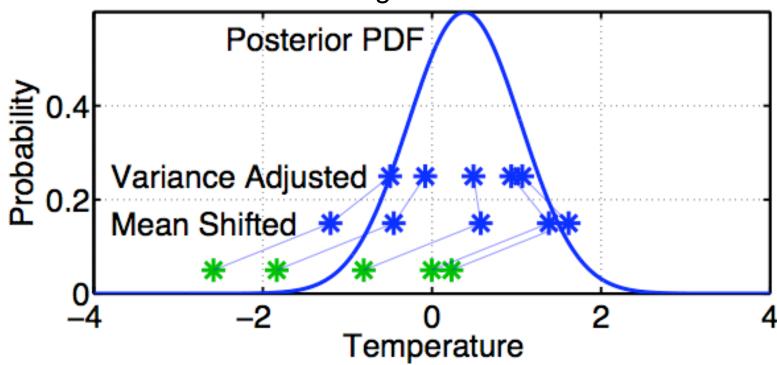
Compute the continuous posterior PDF.



Use a deterministic algorithm to 'adjust' the ensemble.



First, 'shift' the ensemble to have the exact mean of the posterior.



First, 'shift' the ensemble to have the exact mean of the posterior. Second, linearly contract to have the exact variance of the posterior. Sample statistics are identical to Kalman filter.

We now know how to assimilate a single observed variable.

Section 2: How should observations of one state variable impact an unobserved state variable?

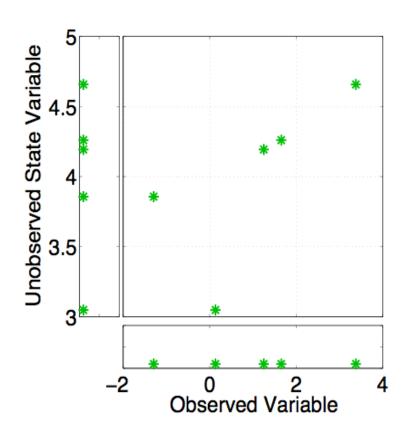
Single observed variable, single unobserved variable

So far, we have a known observation likelihood for single variable.

Now, suppose the prior has an additional variable.

Examine how ensemble members update the additional variable.

Basic method generalizes to any number of additional variables.

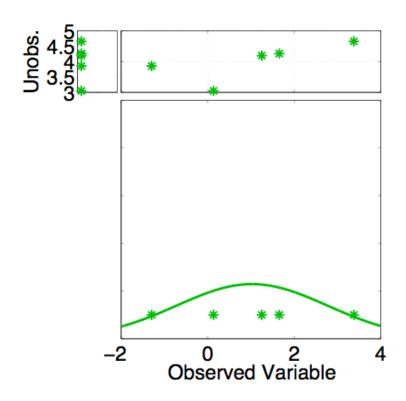


Assume that all we know is prior joint distribution.

One variable is observed, temperature at Annecy.

What should happen to an

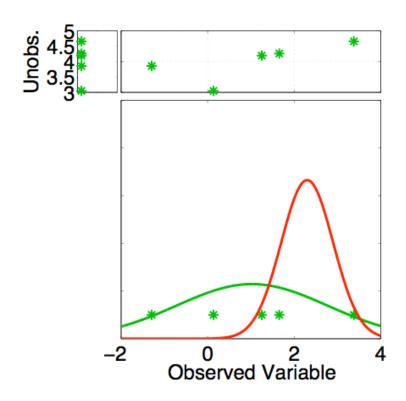
What should happen to an unobserved variable, like temperature at Geneva?



Assume that all we know is prior joint distribution.

One variable is observed.

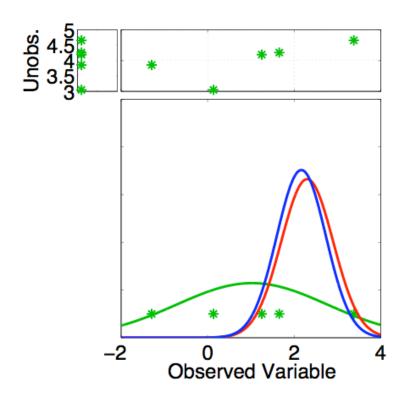
Update observed variable as in previous section.



Assume that all we know is prior joint distribution.

One variable is observed.

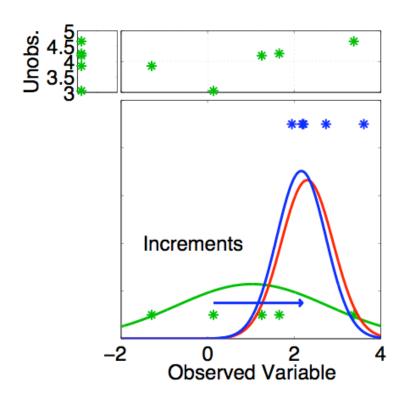
Update observed variable as in previous section.



Assume that all we know is prior joint distribution.

One variable is observed.

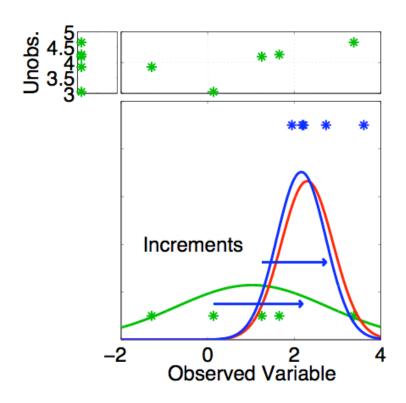
Update observed variable as in previous section.



Assume that all we know is prior joint distribution.

One variable is observed.

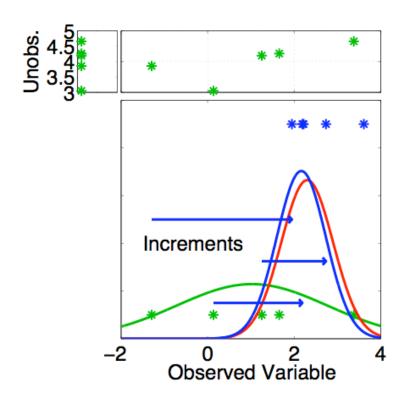
Compute increments for prior ensemble members of observed variable.



Assume that all we know is prior joint distribution.

One variable is observed.

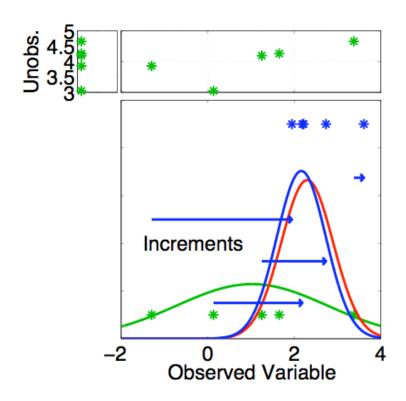
Compute increments for prior ensemble members of observed variable.



Assume that all we know is prior joint distribution.

One variable is observed.

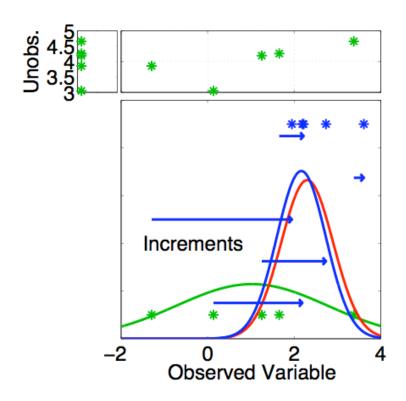
Compute increments for prior ensemble members of observed variable.



Assume that all we know is prior joint distribution.

One variable is observed.

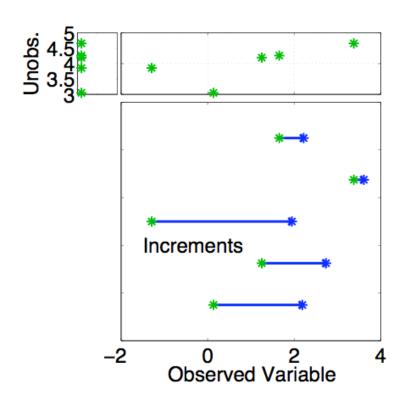
Compute increments for prior ensemble members of observed variable.



Assume that all we know is prior joint distribution.

One variable is observed.

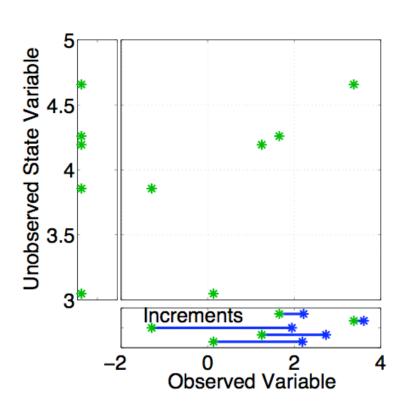
Compute increments for prior ensemble members of observed variable.



Assume that all we know is prior joint distribution.

One variable is observed.

Using only increments guarantees that if observation had no impact on observed variable, unobserved variable is unchanged (highly desirable).



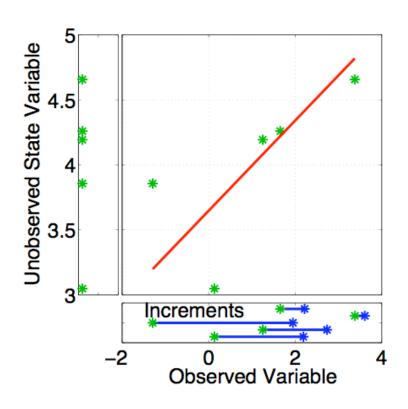
Assume that all we know is prior joint distribution.

How should the unobserved variable be impacted?

First choice: least squares.

Equivalent to linear regression.

Same as assuming binormal prior.

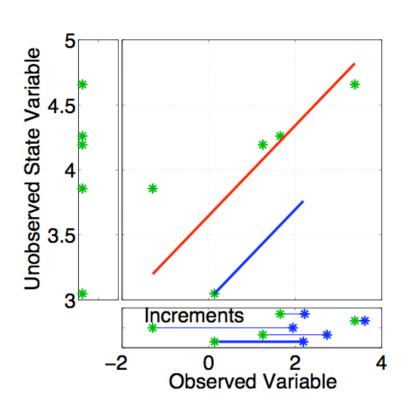


Have joint prior distribution of two variables.

How should the unobserved variable be impacted?

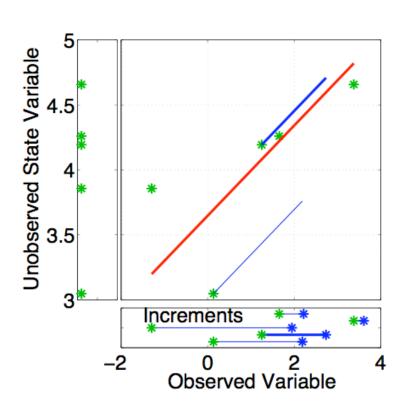
First choice: least squares.

Begin by finding <u>least squares</u> <u>fit.</u>



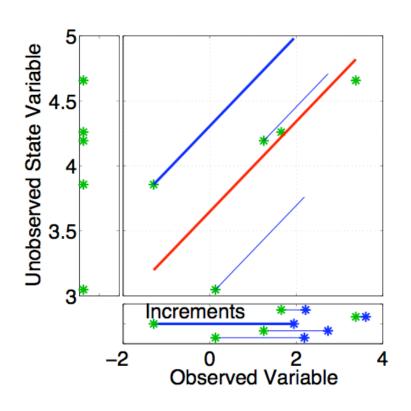
Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.



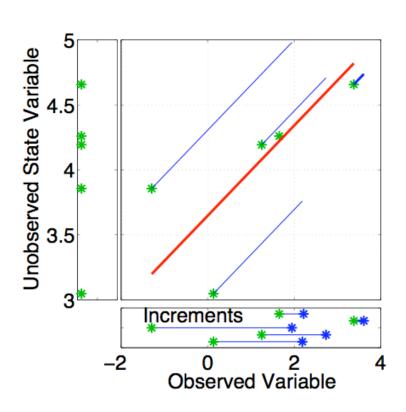
Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.



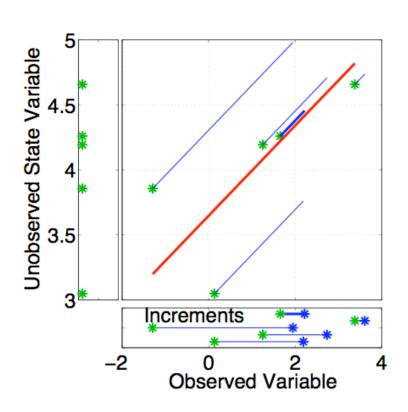
Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.



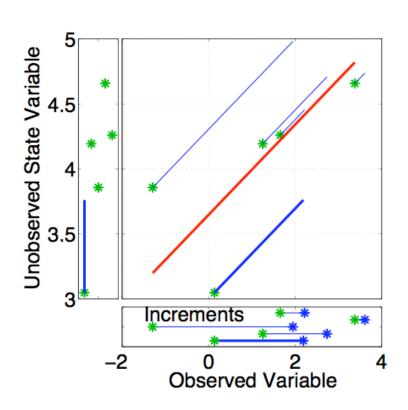
Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.



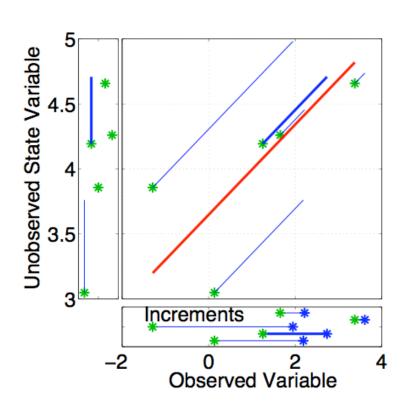
Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.



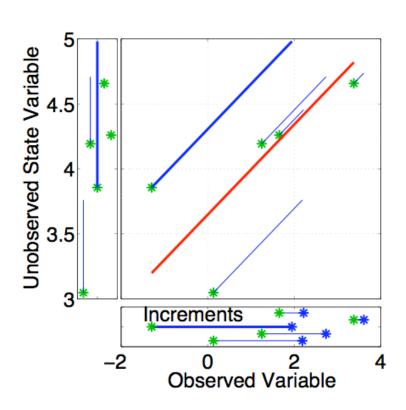
Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.



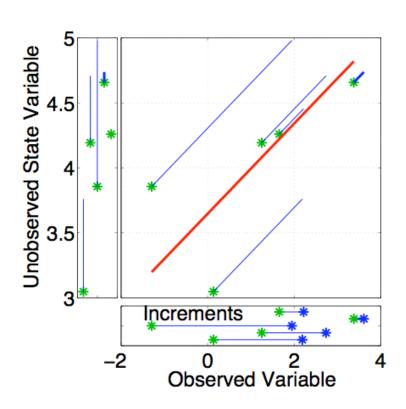
Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.



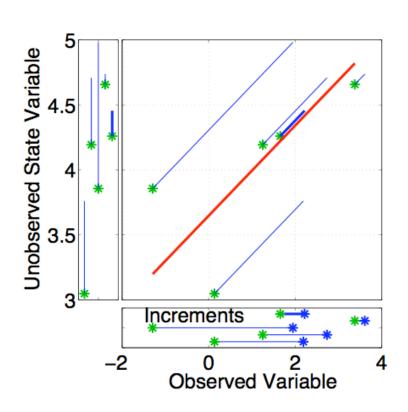
Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.



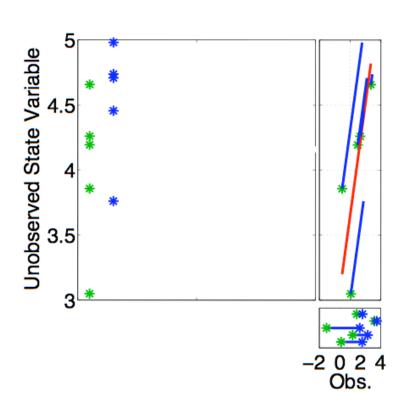
Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

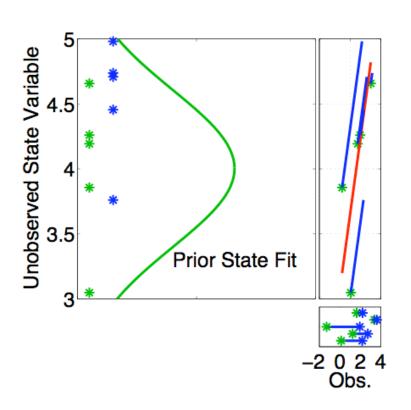


Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

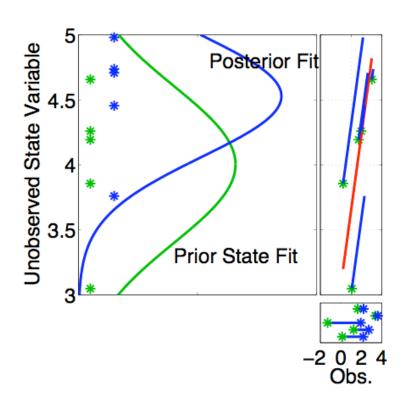


Now have an updated (posterior) ensemble for the unobserved variable.



Now have an updated (posterior) ensemble for the unobserved variable.

Fitting Gaussians shows that mean and variance have changed.

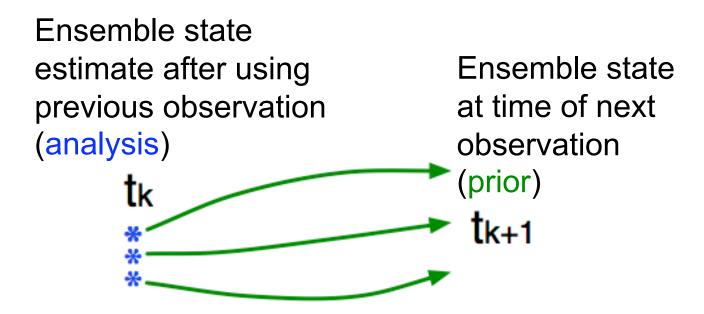


Now have an updated (posterior) ensemble for the unobserved variable.

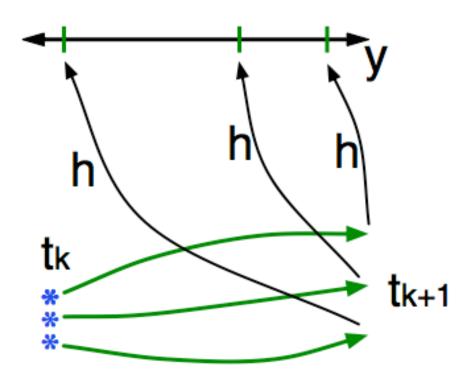
Fitting Gaussians shows that mean and variance have changed.

Other features of the prior distribution may also have changed.

1. Use model to advance ensemble (3 members here) to time at which next observation becomes available.

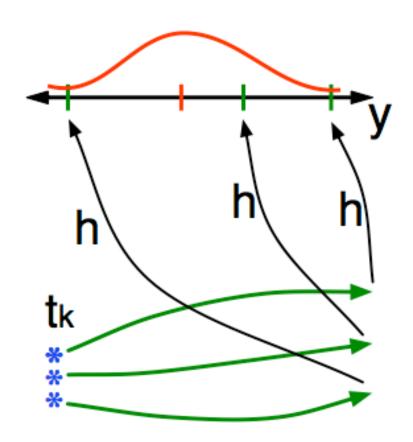


2. Get prior ensemble sample of observation, y = h(x), by applying forward operator **h** to each ensemble member.

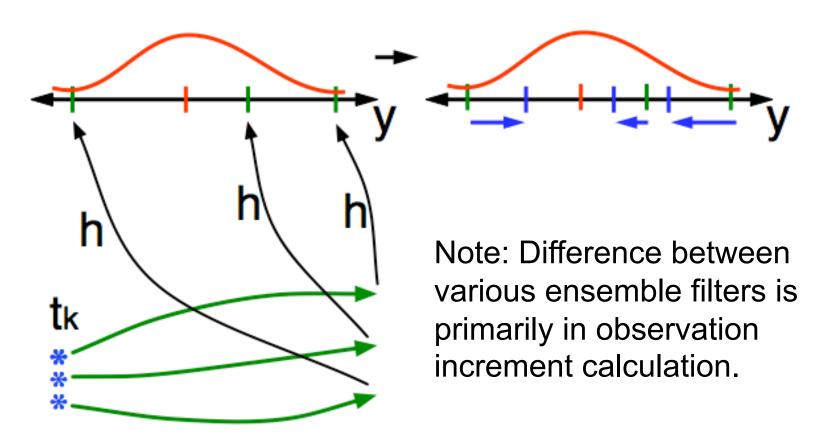


Theory: observations from instruments with uncorrelated errors can be done sequentially.

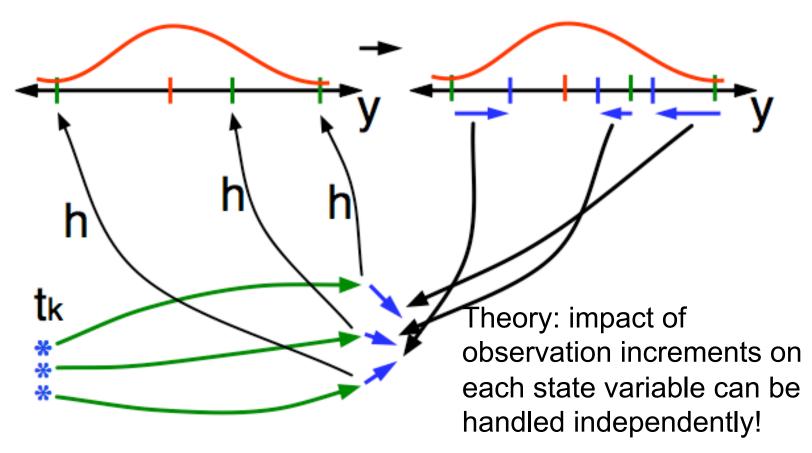
3. Get observed value and observational error distribution from observing system.



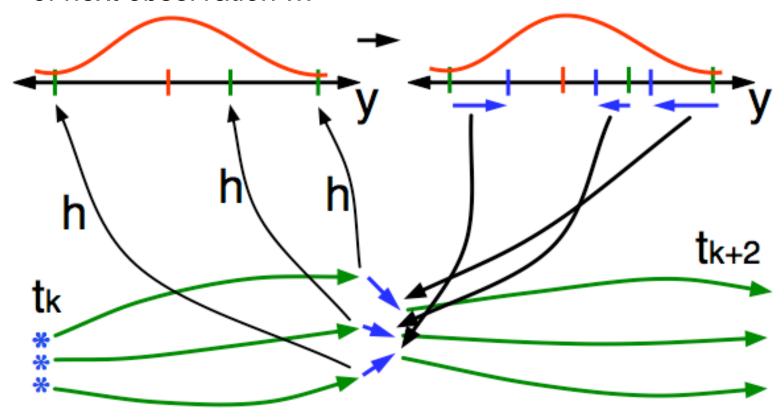
4. Find the increments for the prior observation ensemble (this is a scalar problem for uncorrelated observation errors).



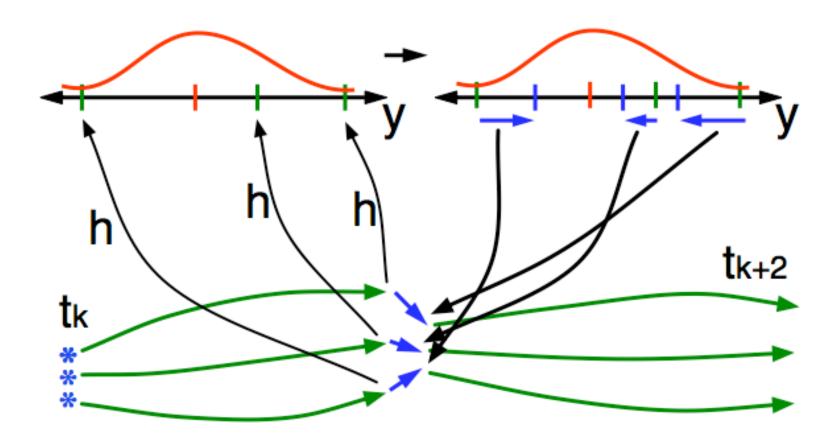
5. Use ensemble samples of **y** and each state variable to linearly regress observation increments onto state variable increments.



6. When all ensemble members for each state variable are updated, there is a new analysis. Integrate to time of next observation ...

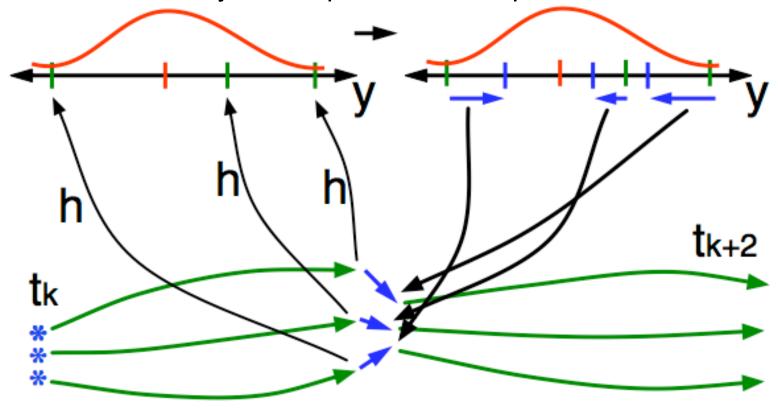


A generic ensemble filter system like DART just needs: 1. A way to make model forecasts;

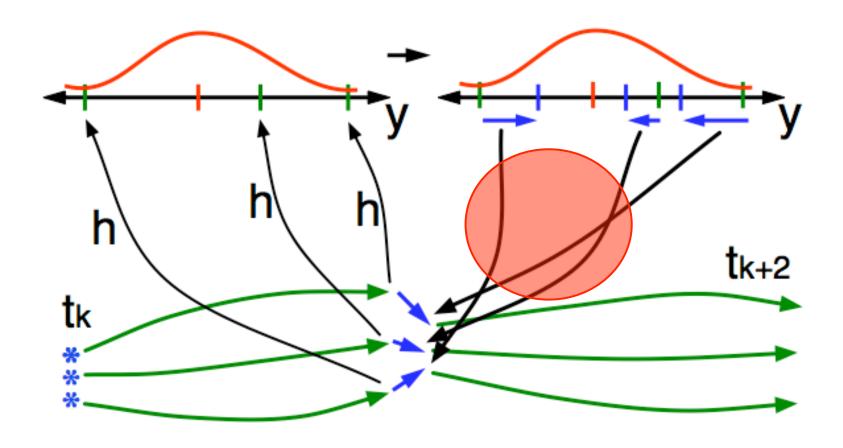


A generic ensemble filter system like DART just needs:

- 1. A way to make model forecasts;
- 2. A way to compute forward operators, h.



For large models, regression of increments onto each state variable dominates time.



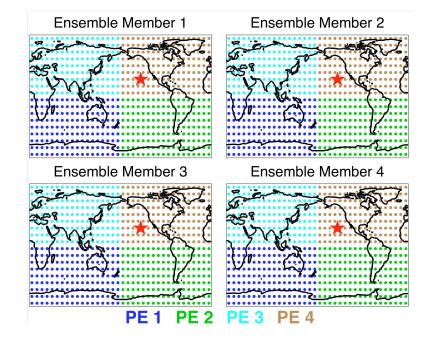
For large models, regression of increments onto each state variable dominates time.

Simple example:

4 Ensemble members;

4 PEs (colors).

Observation shown by red star.



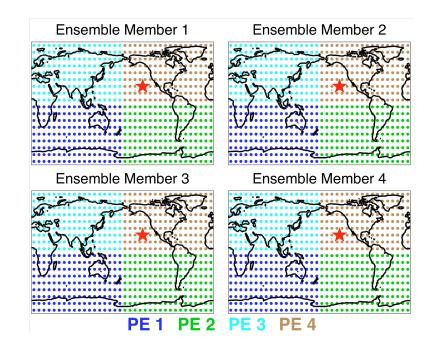
For large models, regression of increments onto each state variable dominates time.

One PE broadcasts obs. increments.

All ensemble members for each state variable are on one PE.

Can compute mean, variance without communication.

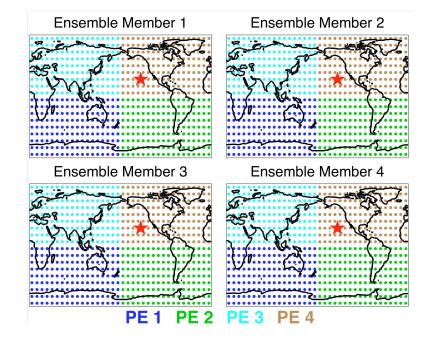
All state increments computed in parallel.



For large models, regression of increments onto each state variable dominates time.

Computing forward operator, h, is usually local interpolation.

Most obs. require no communication.

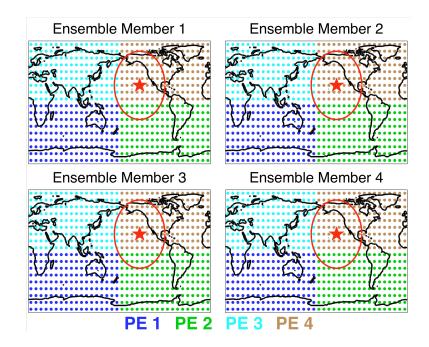


For large models, regression of increments onto each state variable dominates time.

Observation impact usually localized.

- Reduces sampling error.
- Observation in N. Pacific not expected to change Antarctic state.

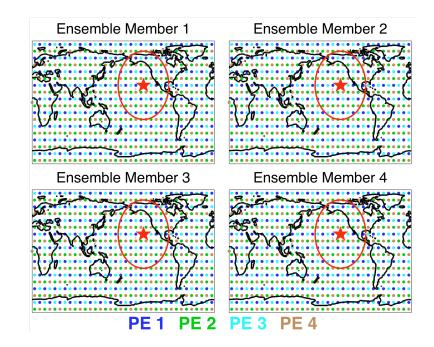
Now have a load balancing problem.



For large models, regression of increments onto each state variable dominates time.

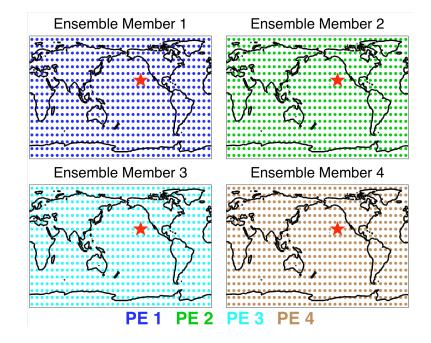
Can balance load by 'randomly' assigning state ensembles to PEs.

Now computing forward operators, h, requires communication.



For large models, regression of increments onto each state variable dominates time.

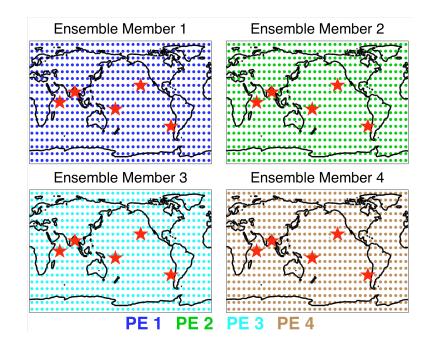
If each PE has a complete ensemble, forward operators require no communication.



For large models, regression of increments onto each state variable dominates time.

If each PE has a complete ensemble, forward operators require no communication.

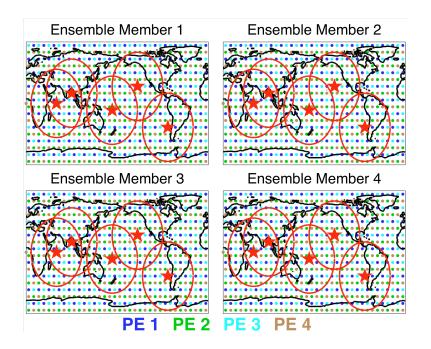
Can do many forward operators in parallel.



For large models, regression of increments onto each state variable dominates time.

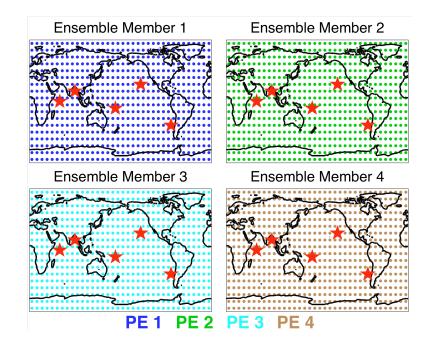
Do a data transpose, using all to all communication.

Can do state increments for many obs in parallel for extra cost O(n²) (n is number of obs)



For large models, regression of increments onto each state variable dominates time.

Then transpose back to do more forward operators or advance model.



Algorithm can be tuned for problem size, # of PEs;

Number of observations per transpose; Selection of subsets of obs. to do in parallel;

How to assign state variables to PEs to:

- 1). Minimize transpose cost;
- 2). Minimize forward operator cost;
- 3). Minimize communication for updates.

Really fun for heterogeneous communication paths!

Scaling for large atmospheric models:

Naïve random algorithm scales to O(100) PEs for midsize climate / regional prediction models.

Expect modern NWP model to scale to O(1000).

O(10,000) seems viable with custom algorithm design.

Conclusions

- 1. Ensemble filters are trivial to implement for arbitrary models and observations. We've done atmospheric and ocean GCMs in less than a person month.
- 2. Sequential ensemble filter algorithms promise to scale well to O(1,000), and probably O(10,000) PEs with limited model specific tuning.

Code to implement all of the parallel filter algorithms discussed are freely available from:

http://www.image.ucar.edu/DAReS/DART/

