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Observations 

…to produce an analysis 
(best possible estimate). 

What is Data Assimilation? 

+ 

Observations combined with a Model forecast… 
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Example: Estimating the Temperature Outside 

An observation has a value ( * ),  
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Example: Estimating the Temperature Outside 

An observation has a value ( * ),  

and an error distribution (red curve) that is associated with the 
instrument. 
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Example: Estimating the Temperature Outside 

Thermometer outside measures 1C.  

Instrument builder says thermometer is unbiased with +/- 0.8C gaussian 
error. 
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The red plot is               , probability of temperature given that To was 
observed. 

Example: Estimating the Temperature Outside 

Thermometer outside measures 1C.  

€ 

P T |To( )
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The green curve is               ; probability of temperature given all available 
prior information    . 

Example: Estimating the Temperature Outside 

We also have a prior estimate of temperature. 

€ 

P T |C( )

€ 

C
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Example: Estimating the Temperature Outside 

Prior information      can include: 

1.  Observations of things besides T; 

2.  Model forecast made using observations at earlier times; 

3.  A priori physical constraints  ( T > -273.15C ); 

4.  Climatological constraints  ( -30C < T < 40C ). 

€ 

C

ECMWF Seminar; 11 Sept. 2009 



pg 9 

Combining the Prior Estimate and Observation 

€ 

P T |To,C( ) =
P To |T,C( )P T |C( )

P To |C( )
Bayes 
Theorem: 

Posterior: Probability 
of T given 

observations and 
Prior. Also called 

update or analysis. 

Prior 

Likelihood: Probability that To  is 
observed if T is true value and given 
prior information C. 
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Combining the Prior Estimate and Observation 

€ 

P To |T,C( )P T |C( )
P To |C( )

=

€ 

P To |T,C( )P T |C( )
P To | x( )P x |C( )dx∫

€ 

=
P To |T,C( )P T |C( )
normalization

Rewrite Bayes as: 

Denominator normalizes so Posterior is PDF. 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Consistent Color Scheme Throughout Tutorial 

Green = Prior 

Red = Observation 

Blue = Posterior 

Black = Truth   

(truth available only for ‘perfect model’ examples) 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 
normalization 

Generally no analytic solution for Posterior. 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 
normalization 

Gaussian Prior and Likelihood -> Gaussian Posterior 
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For Gaussian prior and likelihood… 

Prior   

Likelihood   

Then, Posterior 

With   

Combining the Prior Estimate and Observation 

€ 

P T |C( ) = Normal Tp,σ p( )

€ 

P To |T,C( ) = Normal To,σ o( )

€ 

P T |To,C( ) = Normal Tu,σ u( )

€ 

σ u = σ p
−2 +σ o

−2( )
−1

€ 

Tu =σ u
2 σ p

−2Tp +σ o
−2To[ ]
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1.  Suppose we have a linear forecast model L 

A.  If temperature at time t1 = T1, then  
   temperature at t2 = t1 + Δt  is  T2 = L(T1) 

B.  Example: T2 = T1 + ΔtT1 

The One-Dimensional Kalman Filter 
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1.  Suppose we have a linear forecast model L. 

A.  If temperature at time t1 = T1, then  
   temperature at t2 = t1 + Δt  is  T2 = L(T1). 

B.  Example: T2 = T1 + ΔtT1 . 

2.  If posterior estimate at time t1 is Normal(Tu,1, σu,1) then  
   prior at t2 is Normal(Tp,2, σp,2). 

Tp,2 = Tu,1,+ ΔtTu,1 

σp,2  = (Δt + 1) σu,1  

The One-Dimensional Kalman Filter 
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1.  Suppose we have a linear forecast model L. 

A.  If temperature at time t1 = T1, then  
   temperature at t2 = t1 + Δt  is  T2 = L(T1). 

B.  Example: T2 = T1 + ΔtT1 . 

2.  If posterior estimate at time t1 is Normal(Tu,1, σu,1) then  
   prior at t2 is Normal(Tp,2, σp,2). 

3.  Given an observation at t2 with distribution Normal(to, σo) 
the likelihood is also Normal(to, σo). 

The One-Dimensional Kalman Filter 
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1.  Suppose we have a linear forecast model L. 

A.  If temperature at time t1 = T1, then  
   temperature at t2 = t1 + Δt  is  T2 = L(T1). 

B.  Example: T2 = T1 + ΔtT1 . 

2.  If posterior estimate at time t1 is Normal(Tu,1, σu,1) then  
   prior at t2 is Normal(Tp,2, σp,2). 

3.  Given an observation at t2 with distribution Normal(to, σo) 
the likelihood is also Normal(to, σo). 

4.  The posterior at t2 is Normal(Tu,2, σu,2) where Tu,2  and σu,2 
come from page 19. 

The One-Dimensional Kalman Filter 
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A One-Dimensional Ensemble Kalman Filter 

Represent a prior pdf by a sample (ensemble) of N values: 
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Use sample mean 
and sample standard deviation  
to determine a corresponding continuous distribution 

A One-Dimensional Ensemble Kalman Filter 

Represent a prior pdf by a sample (ensemble) of N values: 

€ 

T = Tn N
n=1

N

∑

€ 

σT = Tn −T ( )2 N −1( )
n=1

N

∑

€ 

Normal T ,σT( )
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A One-Dimensional Ensemble Kalman Filter:  
Model Advance 

If posterior ensemble at time t1 is T1,n,  n = 1, …, N 
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A One-Dimensional Ensemble Kalman Filter:  
Model Advance 

If posterior ensemble at time t1 is T1,n,  n = 1, … N , 
advance each member to time t2 with model, T2,n = L(T1, n)  n = 1, …, N. 
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A One-Dimensional Ensemble Kalman Filter:  
Model Advance 

Same as advancing continuous pdf at time t1 … 
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A One-Dimensional Ensemble Kalman Filter:  
Model Advance 

Same as advancing continuous pdf at time t1 
to time t2 with model L. 
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A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Fit a Gaussian to the sample. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Get the observation likelihood. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Compute the continuous posterior PDF. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Use a deterministic algorithm to ‘adjust’ the ensemble. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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First, ‘shift’ the ensemble to have the exact mean of the posterior. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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First, ‘shift’ the ensemble to have the exact mean of the posterior. 
Second, linearly contract to have the exact variance of the posterior. 
  Sample statistics are identical to Kalman filter. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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We now know how to assimilate a single observed variable. 

Section 2: How should observations of one state variable impact an 
unobserved state variable? 
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Single observed variable, single unobserved variable 

So far, we have a known observation likelihood for single variable. 

Now, suppose the prior has an additional variable. 

Examine how ensemble members update the additional variable. 

Basic method generalizes to any number of additional variables. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed, 
temperature at Reading. 
What should happen to an 
unobserved variable, like 
temperature at London? 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Update observed variable as in 
previous section. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Update observed variable as in 
previous section. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Update observed variable as in 
previous section. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Compute increments for prior 
ensemble members of observed 
variable. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Compute increments for prior 
ensemble members of observed 
variable. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Compute increments for prior 
ensemble members of observed 
variable. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Compute increments for prior 
ensemble members of observed 
variable. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Compute increments for prior 
ensemble members of observed 
variable. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Using only increments 
guarantees that if observation 
had no impact on observed 
variable, unobserved variable is 
unchanged (highly desirable). 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
How should the unobserved 
variable be impacted? 
First choice: least squares. 
Equivalent to linear regression. 
Same as assuming binormal 
prior. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
How should the unobserved 
variable be impacted? 
First choice: least squares. 
Begin by finding least squares 
fit. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Now have an updated 
(posterior) ensemble for the 
unobserved variable. 
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Ensemble filters: Updating additional prior state 
variables 

Now have an updated 
(posterior) ensemble for the 
unobserved variable. 
Fitting Gaussians shows that 
mean and variance have 
changed. 
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Ensemble filters: Updating additional prior state 
variables 

Now have an updated 
(posterior) ensemble for the 
unobserved variable. 
Fitting Gaussians shows that 
mean and variance have 
changed. 
Other features of the prior 
distribution may also have 
changed. 
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Ensemble Filter for Large Geophysical Models 

Ensemble state 
estimate after using 
previous observation 
(analysis) 

Ensemble state 
at time of next 
observation 
(prior) 

1. Use model to advance ensemble (3 members here) 
to time at which next observation becomes available. 
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2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member. 

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially. 

Ensemble Filter for Large Geophysical Models 
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3. Get observed value and observational 
error distribution from observing system. 

Ensemble Filter for Large Geophysical Models 
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4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors). 

Note: Difference between 
various ensemble filters is 
primarily in observation 
increment calculation. 

Ensemble Filter for Large Geophysical Models 
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5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments. 

Theory: impact of 
observation increments on 
each state variable can be 
handled independently! 

Ensemble Filter for Large Geophysical Models 
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6. When all ensemble members for each state variable 
are updated, there is a new analysis. Integrate to time 
of next observation … 

Ensemble Filter for Large Geophysical Models 
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A generic ensemble filter system like DART just needs: 
 1. A way to make model forecasts; 

Ensemble Filter for Large Geophysical Models 
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A generic ensemble filter system like DART just needs: 
 1. A way to make model forecasts; 
 2. A way to compute forward operators, h. 

Ensemble Filter for Large Geophysical Models 
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For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 
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For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 

Simple example: 
 4 Ensemble members; 
 4 PEs (colors). 

Observation shown by red star. 
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For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 

One PE broadcasts obs. increments. 

All ensemble members for each state 
variable are on one PE. 

Can compute mean, variance without 
communication. 

All state increments computed in 
parallel. 
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For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 

Computing forward operator, h, is 
usually local interpolation. 

Most obs. require no communication. 
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For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 

Observation impact usually localized. 
  Reduces sampling error. 
  Observation in N. Pacific not 
expected to change Antarctic state. 

Now have a load balancing problem. 
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For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 

Can balance load by ‘randomly’ 
assigning state ensembles to PEs. 

Now computing forward operators, h, 
requires communication. 
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For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 

If each PE has a complete ensemble, 
forward operators require no 
communication. 
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For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 

If each PE has a complete ensemble, 
forward operators require no 
communication. 

Can do many forward operators in 
parallel. 
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For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 

Do a data transpose, using all to all 
communication. 

Can do state increments for many 
obs in parallel for extra cost O(n2) 
 (n is number of obs) 

ECMWF Seminar; 11 Sept. 2009 



pg 81 

For large models, regression of increments onto each 
state variable dominates time. 

Parallel Implementation of Sequential Filter 

Then transpose back to do more 
forward operators or advance model. 
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Parallel Implementation of Sequential Filter 

Algorithm can be tuned for problem size, # of PEs; 

Number of observations per transpose; 
Selection of subsets of obs. to do in parallel; 

How to assign state variables to PEs to: 
 1). Minimize transpose cost; 
 2). Minimize forward operator cost; 
 3). Minimize communication for updates. 

Really fun for heterogeneous communication paths! 
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Parallel Implementation of Sequential Filter 

Scaling for large atmospheric models: 

Naïve random algorithm scales to O(100) PEs for mid-
size climate / regional prediction models. 

Expect modern NWP model to scale to O(1000). 

O(10,000) seems viable with custom algorithm design. 
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Conclusions 

1.  Ensemble filters are trivial to implement for arbitrary 
models and observations. We’ve done atmospheric 
and ocean GCMs in less than a person month. 

2.  Sequential ensemble filter algorithms promise to 
scale well to O(1,000), and probably O(10,000) PEs 
with limited model specific tuning. 
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http://www.image.ucar.edu/DAReS/DART/ 

Code to implement all of the parallel filter 
algorithms discussed are freely available from: 


