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Assimilating observations of clouds in global models

Current observations of clouds and rain don’t affect cloud or 
convection variables directly 
(Clouds aren’t part of the “control vector”) 

Could direct constraints on clouds improve analyses? forecasts? 

How would that work? 

Clouds are represented by prognostic variables that co-vary 
with other state variables (esp. temperature and humidity) 

The link is the “cloud scheme;” balance between
Turbulence, convection, large-scale uplift vs. 
Mixing, microphysics, large-scale descent

Some physics is sub-grid and/or diagnostic, others resolved 



Data assimilation formally merges models and observations

An assimilation system produces the most likely state of the 
atmosphere given some prior knowledge (“background”) and a 
current set of observations 

This is a kind of model evaluation

Practical systems (e.g. Kalman filter) assume 

linear relationships among variables 

Gaussian distributions of background and observational errors

Models are mapped to observations via “observation operator” 
(retrievals/products are not always necessary)  

Knowledge of error characteristics is crucial 



Ensemble data assimilation

A Monte Carlo technique to solve the Kalman filter equations

An ensemble of model runs provides time-evolving, spatially-
dependent estimates of background error and analysis uncertainty 

Computationally on a par with 4D-Var but 
easy to code: no adjoint or tangent-linear model 

Compared to variational methods:

Less mature
Competitive in performance
Just moving into operations in some centers



Diversion - Data assimilation and climate model evaluation (i)

Weather prediction and climate models are structurally very 
similar 

Resolved physics (dynamics) + un-resolved physics 
(convection, clouds, microphysics, radiation...) 

Two key differences 

Climate models might include physics acting on longer time 
scales (interactive land surface, sea ice)... 

NWP models are linked to data assimilation systems



Diversion - Data assimilation and climate model evaluation (ii)

Evaluation methods for NWP and GCMs are very different

Routine, time-specific evaluation against observations vs. 
statistical comparison on many time- and space-scales

Many GCM errors should be detectable in short forecasts

See DOE CAPT project, Rodwell & Palmer (2007), ... 

In one case (Met Office) the NWP and climate models are 
essentially the same (and very good)

Ensemble Kalman filters can bring data assimilation to those 
climate models without access to NWP infrastructure



Assimilation for clouds: the observational problem is very hard

Observations are indirect measures of cloud state 

e.g. cloud optical depth is a loose constraint on a profile of 
cloud water content 

Observational errors are non-Gaussian 

Satellite data is very dense  (many per model grid cell)

How can many observations be related to a single instance of 
the state? How should observations be aggregated? 



Perfect model experiments

Skip the hard part for now and assimilate “observations” of cloud 
variables (e.g. cloud water, ice contents) directly

The “observations” come directly from a free run of the model. 
Observational error (10% of the observed value) is added

This tells us how much analysis skill we could possibly hope to gain 
(we plan to see how this translates into forecast skill) 



Technical details

Two GCMs with different cloud schemes

AM2: prognostic cloud ice, water, fraction

CAM3: prognostic cloud water and ice

 coupled to NCAR’s Data Assimilation Research Testbed (DART)

80-member ensembles, assimilating T/U/V/Q for ten days

assimilating conventional obs + O(1000) uniformly-distributed 
observations of clouds every 6 hours (greatest possible impact)

Covariance localization and adaptive inflation

We impose a floor on cloud water of 10-10 kg/kg; 
about 1/3 of all cloud observations are rejected



Cloud observations help constrain the state (i) 
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But clouds don’t always behave well in the ensemble
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Poorly-behaved clouds look like model error
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Preliminary lessons from CAM experiments

Observations of clouds can indeed be assimilated in global models

given no model error, no observational bias, sparse 
observations, stringent rejection criteria

Observations of cloud water/ice improve analyses and forecasts

Cloud water certainly improves, but this skill increase is quickly 
lost

Other fields are improved; this may be less dramatic in more 
realistic observational scenarios



Prospects for using satellite observations of clouds in DA

In a perfect world, observations of cloud state can improve the 
overall analysis

But don’t smile too much: there are large hurdles to practical 
applications

a) clouds are not the problem for which assimilation is optimal

b) it’s not clear how much extra information cloud observations 
bring 

c) it’s not clear how well practical observations constrain cloud 
state

d) it’s not clear how to resolve representativeness issues


