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Ensemble Assimilation for Tropical Storms 
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Position of 96 prior 
ensemble members for 
mature hurricane. 

2-degree grid.  Storms close enough 
that strong winds overlap 

(but eyewall winds may overlap 
eye from another ensemble). 

 Prior sample for winds 
at a gridpoint are 
approximately gaussian? 



Ensemble Assimilation for Tropical Storms 
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Position of 96 prior 
ensemble members for 
weak developing TS. 

2-degree grid.  Ensemble storms may 
not overlap at all. 

 Prior sample for winds 
at a gridpoint are  
NOT gaussian. 



Basic Ensemble Kalman Filters Assume… 

4 

  Ensemble Winds at point should be gaussian. 

  Least squares is reasonable for relation between 
observation and state variable. 

 (Same as saying linear regression is useful). 

Priors with discrete structures like a TS clearly violate 
these assumptions, but… 

How serious are these problems? 



Thought Experiment: 1D Hurricane Vortex Assimilation 
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Model of meridional wind across 
vortex. 

‘Truth’ is Rankine vortex. 

Meridional wind cross section. 



1D Vortex Assimilation: Generate Prior Ensemble 
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Select prior ensemble members: 

  Position drawn from unbiased normal;  
  Amplitude drawn from unbiased normal; 
  Vortex width unchanged here.  
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1D Vortex Assimilation: Generate Prior Ensemble 
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Select prior ensemble members: 

  Variation in position big compared to vortex size;  
  All priors have a vortex (not always so for real cases); 
  Strength is unbiased (unlikely for real cases).  



1D Vortex Assimilation: Prior Ensemble Mean 
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Prior ensemble mean: 

 Has limited amplitude, poor phase; 
 A feature-based mean might be more natural; 
 Suggests gaussian assumption is suspect. 



1D Vortex Assimilation: Impact of a wind observation 
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Observe wind at ‘longitude’ 55: 

 Located near peak true winds;  
 Prior distribution biased weak; 
 Prior doesn’t look very gaussian (more later). 



Step 1: Analysis for observed quantity (wind at 55) 
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Analysis (posterior) distribution: 

 Is closer to true wind; 
 Has less spread as expected.  



Step 2: Regress observed increments onto gridpoints 
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Analysis for selected ensemble member (1): 

 Is closer to true wind in most locations; 
 Has lots of un-Rankine like structure; 
 Might not be what we expected.  



Step 2: Regress observed increments onto gridpoints 
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Analysis for selected ensemble member (2): 

 Is closer to true wind in most locations; 
 Has lots of un-Rankine like structure; 
 Might not be what we expected.  



Step 2: Regress observed increments onto gridpoints 
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Analysis for selected ensemble member (3): 

 Is closer to true wind in most locations; 
 Has lots of un-Rankine like structure; 
 Might not be what we expected.  



Step 2: Regress observed increments onto gridpoints 
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Analysis for all ensemble members: 

 Has increased wind away from vortex; 
 Not clear where analysis position is; 
 Is significantly noisier than prior.  



Challenge 1: Non-gaussian observation prior distribution 
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If wind gradients are large compared to  position 
uncertainty: 

 The prior observed distribution is non-gaussian; 
 Few priors have strong winds; 
 In this example, few have very weak winds; 
 Essentially bimodal; worse for large ensembles.  



Possbile solution: Non-gaussian ensemble filters 
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Ensemble Kalman filter vs. non-gaussian filter: 

 Strongly bimodal prior ensemble (green asterisks); 
 Non-gaussian: all members in observed mode (top blue asterisks) 
 Kalman filter: 3 members in no-mans land (bottom blue asterisks); 
 In our case, this would weaken vortex. 



Challenge 2: Non-linear joint prior distributions 
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Second step of filter 
regresses observed 
increments onto 
gridpoints. 

Uses prior joint 
distribution.  

For close gridpoints linear fit is okay.  
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Challenge 2: Non-linear joint prior distributions 
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Part of this is just 
gaussian noise; not a 
serious problem 

Part is non-linear 
relation between 
observation and 
gridpoint. This is a huge 
challenge.  



Partial Solution: Improved localization 
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Localization limits impact of observation on gridpoint. 

Often just a function of horizontal distance; distant 
observations don’t do much. 

Clearly insufficient near vortex. 

Need spatially inhomogeneous localization. 



Partial Solution: Improved localization 
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 Adaptive localization tools being developed. 
 Example here shows localization for v wind 
observation on u wind state variables in GCM. 
 Local structure around TS will be more complex. 



Partial Solution: Improved localization 
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 Adaptive localization works for sampling error. 
 Dealing with non-linear priors requires more 
research. 
 Might need non-linear regression (HARD). 



Assimilation of vortex specific observations 
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This is the original analysis after one wind observation. 



Assimilation of vortex specific observations 
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Also assimilating an observation of the vortex position 
improves the analysis. 
The position prior is generally nicely gaussian. 



Assimilation of vortex specific observations 
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Instead of assimilating wind, one can assimilate wind 
as a function of distance from center. 
This reduces non-gaussianity but can increase non-
linearity. 



Invertible transformation of state before assimilation 
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Transform state to position and wind relative to center. 
Assimilate observation of wind and position. 
Transform back. 



Invertible transformation of state before assimilation 

32 

 Transforming to position and wind relative to center 
works very well here, but this is by construction. 

 Removing vortex from background is tricky (witness 
GFDL and bogusing). 

 Less vortex specific transformations may prove 
useful. 

 Applying transformations to make prior more linear 
near strong gradients is a research topic. 



Some other promising approaches 
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 Extending particle filters (handle arbitrary priors) to 
large problems. 

 Hybrid use of variational and ensemble methods (this 
is too much work for me). 



Summary 
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1. Strong gradients and discrete structures in TS 
ensemble assimilation is a special challenge. 
2. Leads to non-gaussian, non-linear prior ensembles. 
3. Non-gaussian observation methods are available. 
4. More sophisticated localization needed. 
5. More research needed on state transformation. 
6. Short-term goal: good use of observations in core. 

Caveat 1: This is my highly-biased viewpoint. 

Caveat 2: Good models with frequent observations 
fixes everything. 


