A Loosely Coupled Ocean-Atmosphere Ensemble Assimilation System.

Tim Hoar, Nancy Collins, Kevin Raeder, Jeffrey Anderson, NCAR Institute for Math Applied to Geophysics Data Assimilation Research Section

> Steve Yeager, Mariana Vertenstein, Gokhan Danabasoglu, Alicia Karspeck, and Joe Tribbia NCAR/NESL/CGD/Oceanography

Ocean Data Assimilation Motivation

The resulting high-fidelity ocean states are needed. The ensembles provide uncertainty quantification.

- Climate change over time scales of 1 to several decades has been identified as very important for mitigation and infrastructure planning.
- High fidelity ocean states will be needed by the IPCC decadal prediction program.
- The ocean plays a crucial role by providing a source or sink (and system memory) for the atmosphere of many quantities, such as heat, moisture, CO₂, etc.
- Increasing numbers of observations from larger regions of the oceans are making state-of-the-art data assimilation a promising possibility.

1. Use model to advance ensemble (3 members here) to time at which next observation becomes available.

Ensemble state estimate, $x(t_k)$, after using previous observation (analysis)

Ensemble state at time of next observation (prior)

tĸ

2. Get prior ensemble sample of observation, y = h(x), by applying forward operator **h** to each ensemble member.

Theory: observations from instruments with uncorrelated errors can be done sequentially.

3. Get observed value and observational error distribution from observing system.

AMS – 26 Jan 2011

pg 5

4. Compute the increments for the prior observation ensemble (this is a scalar problem for uncorrelated observation errors).

pg 6

5. Use ensemble samples of **y** and each state variable to linearly regress observation increments onto state variable increments.

6. When all ensemble members for each state variable are updated, there is a new analysis. Integrate to time of next observation ...

Experiment Overview

Compare the effect of using a single atmospheric boundary vs. an ensemble of atmospheric boundaries on ocean data assimilation with POP.

- **"23 POP 1 DATM**" denotes the experiment using 23 POP members and a single "data" atmosphere (CESM framework).
- **"48 POP 48 CAM**" denotes the loosely coupled experiment using 48 POP members and 48 consistent but unique CAM atmospheres.
- Both experiments were conducted for 1998 & 1999.
- The 48 POP 48 CAM experiment was subsequently chosen to produce initial conditions for the IPCC decadal prediction program.

Coupled Ocean-Atmosphere Schematic

AMS – 26 Jan 2011 pg 10

Data Assimilation Research Testbed

Atmospheric Reanalysis

World Ocean Database T,S observation counts

These counts are for 1998 & 1999 and are representative.

FLOAT_SALINITY
FLOAT_TEMPERATURE
DRIFTER_TEMPERATURE
MOORING_SALINITY
MOORING_TEMPERATURE
BOTTLE_SALINITY
BOTTLE_TEMPERATURE
CTD_SALINITY
CTD_TEMPERATURE
STD_SALINITY
STD_TEMPERATURE
XCTD_SALINITY
XCTD_TEMPERATURE
MBT_TEMPERATURE
XBT_TEMPERATURE
APB_TEMPERATURE

- temperature observation error standard deviation == 0.5 K.
- salinity observation error standard deviation == 0.5 msu.

Experimental Configurations

23 POP 1 DATM

- 1. POP 1-degree displaced pole;
- 2. 23 ensemble members starting from a 'climatological' state;
- 3. Single 'data' atmosphere from CORE;
- 4. DART assimilates observations once per day in a +/- 12 hour window centered at midnight;
- 5. The CESM framework is responsible for all model advances.

The **48 POP 48 CAM** experiment differed in that:

- 1. 48 ensemble members starting from a 'climatological' state;
- 2. Atmospheric forcing from the DART/CAM ensemble reanalysis;

Guide to the following figures:

- 1. Ensemble mean 1-day lead forecast difference from observations.
- 2. **O** is # observations available; +,+ is # assimilated.
- 3. Obs are rejected if too far from ensemble mean (3 std dev here).

Ensemble *Spread* for 100m XBT (Expendable Bathythermograph)

- 1. Spread contracts too much for 23 POP 1 DATM;
- 2. Using single atmospheric forcing is also part of the problem;
- 3. Model bias adds to the problem;
- 4. DART Statistical Sampling Error Correction also helps.

Ensemble Spread for Pacific 100m XBT

Ensemble Spread for Atlantic 100m XBT

10m Mooring Temperature RMSE

- 1. Ensemble mean 1-day lead forecast difference from observations.
- 2. **O** is # observations available. +,+ is # assimilated.
- 3. Observations are rejected if they are too far from ensemble mean (3 standard deviations here).

10m Mooring Temperature RMSE – Pacific

Ensemble mean 1-day lead forecast difference from observations.

100m Mooring Temperature RMSE

- 1. 1/3 of the obs are still rejected by 48 POP 48 CAM in the Pacific.
- 2. Model bias in the thermocline?

100m Mooring Temperature RMSE – Pacific

Learn about ensemble assimilation and DART tools at:

http://www.image.ucar.edu/DAReS/DART/

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., Arellano, A., 2009: *The Data Assimilation Research Testbed: A community facility.* BAMS, **90**, 1283—1296, doi: 10.1175/2009BAMS2618.1

End of Presentation, following slides held in reserve.

Observation Visualization Tools

AMS – 26 Jan 2011 pg 24

Data Assimilation Research Testbed

20 Jan 2011

Observation Visualization Tools

○ ○ ○ X Figure 1	000	9			X MATLAB 7.	9.0 (R2009b)				
<u>File Edit View Insert Tools Desktop Window H</u> elp	Eile Edit View Graphics Debug Parallel Desktop Window Help									
1) 🖆 🖬 🕹 🔖 🔍 🙄 🕲 🐙 🔏 - 🔝 🗉 💷 💷	i 🗋 🖆	🖌 🖻 🛱 🤊	୯ 🕼 🚮 🖹	🕜 Curren	t F <u>o</u> lder: /fs/imag	e/home/thoar/	DART/models/P	OP/work	▼ 🖻	
	← Shortc	uts 🖪 How to Add	🗷 What's New							
	🛃 Varia	ble Editor - obsm	at							X 5 🗆 🕂
	1		🔹 📲 Stac	:k: Base 👻 🔯	No valid plots f	or: obsm 🔻				× * 🔲
	💾 obsn	nat <2739x9 doubl	e>	-	4		6	7		^
01-Jan-1998 12:00:01> 01-Feb-1998 12:00:00	236	340.0700	61 0000	3 200	8 8950	8 861	3 0	613	7 2976e+05	5 2*
	227	340 0700	61 0000	250	8 9310	8 863	1 0	614	7 2976e+05	
3	237	340.0700	61 0000	300	8 6230	8 8/2	1 0	615	7 2976e+05	
	230	240.0700	61 0000	400	7.0700	0.042		616	7.20760.05	
	259	240.0700	61 0000	500	6 6250	0.000		617	7.29760+05	, 2
	240	340.0700	61 0000	500	6 2200	0.529	4 7	619	7.2976e+03	
	241	340.0700	61.0000	700	6.2390 E 9E20	7.609	4 / D 7	610	7.2976e+05	, 4
	242	340.0700	61.0000	700	5.8530	7.096	9 /	619	7.2976e+05	· · ·
	243	340.0700	61.0000	800	5.4670	7.298		620	7.2976e+05	, 4
	244	340.0700	61.0000	900	5.0810	6.780	5 0	621	7.2976e+05	· · ·
	245	340.0700	61.0000	1000	4.6940	6.216	1 0	622	7.29/6e+05) 2
	246	340.0700	61.0000	1100	4.3740	5.638	7 0	623	7.2976e+05	5 2
60	247	340.0700	61.0000	1200	4.1000	5.104	1 0	624	7.2976e+05	5 2
	248	350.5500	42.1500	0	15.6000	Na	N 4	1	7.2976e+05	5 2
360	249	350.5500	42.1500	10	15.5900	Na	N 4	2	7.2976e+05	5 2
latituda 40 340	250	350.5500	42.1500	20	15.5600	Na	N 4	3	7.2976e+05	2 ز
320 200	251	350.5500	42.1500	30	15.5400	Na	N 4	4	7.2976e+05	2 ز
longitude	757	350 5500	42 1500	50	15 5000	Nal	N N	5	7 29760+05	:
○ ○ ○ □	Comma	und Window								± □ ₹ ×
<u>File Edit Yiew Insert Tools Desktop Window H</u> elp	<< ۲	link_obs(fn	amé, ObsTy	/peString	, ObsCopyS [.]	tring, Co	pyString,	QCStrir	ıg, region);	
[] 🖆 🛃 💩 🗞 🍳 🔍 🕲 🐙 🖍 - 🔝 🗉 💷 💷	N =	= 1520 FL0	AT_SALINIT	TY ATUDE		(type	15) tween	levels	0.00 and 14	00.00
	← N =	= 7019 FL0 = 670 M00	RING_SALIN	VITY		(type	27) tween	levels	0.00 and 15	00.00
	N =	= 16228 MOO	RING_TEMPE	ERATURE		(type	28) tween	levels	0.00 and 50	0.00
္က ေဆာင္လိုင္ရန္က ေလ့လိုက္ က လိုက္ရက္လိုက္လာက္လိုက္တာ စီလဲ က လိုက္ရက္လိုက္တာ စီတဲ့ စီလဲ က လိုက္ရက္လိုက္တာ စီတဲ့	N =	= 1419 BOT	TLE_SALINI			(type	30) tween	levels	0.00 and 50	00.00
	N =	= 1306 BUT = 4328 CTD	SALTNTTY	KATUKE		(type	32) tween	levels	0.00 and 50	00.00
	N =	= 4916 CTD	_TEMPERATU	JRE		(type	33) tween	levels	0.00 and 50	00.00
XBT TEMPERATURE	N =	= 38 XCT	D_TEMPERAT	TURE		(type	39) tween	levels	0.00 and 10	00.00
01-Jan-1998 12:00:01> 01-Feb-1998 12:00:00	N =	= 1440 MBT	_TEMPERATU	JRE		(type	41) tween	levels	0.00 and 50	0.00
³⁰ [N =	= 23881 XBT	_TEMPERATU	JRE	2	(type	43) tween	levels	0.00 and 17	50.00
E E		a quality c T quality c	ontrol is	QC copy	2					
Ĕ _{oo}	rep	lacing copi	es with [1	1 < QC fl	ag < 5] wi ⁻	th NaN				
	QC	summary fol	lows:							
	(DA	RT quality	control ==	= 0)	1904 obs	[assimi]	ated]			
ξ 10	(DA	RT quality	control ==	= 4) - 6)	594 ODS 7 obs	[prior f	orward op: C rejector	erator 1 Hi	alied]	
Į Į • • • • • • • • • • • • • • • • • •	(DA	RT quality	control ==	= 0) = 7)	234 obs	foutlier	rejected]		200
				~				-		1993.
	$f_{x} >>$									-

The CAM-DART-POP Implementation

Uses the CESM1 software framework; ocean, atmosphere, and other components communicate through the coupler. A few minor script changes and use of the interactive ensemble capability permit each member of an ensemble of POPs to be forced by a different CAM atmosphere.

Once the additional files are staged, the basic implementation is a trivial addition to the run script that invokes the DART system.

```
# -----
# See if CSM finishes correctly (pirated from ccsm_postrun.csh)
# ------
# DART assimilation operating on restarts
# ------
```

```
grep 'SUCCESSFUL TERMINATION' $CplLogFile
if ( $status == 0 ) then
        ${CASEROOT}/assimilate.csh
endif
```


