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Observations 

…to produce an analysis 
(best possible estimate). 

What is Data Assimilation? 

+ 

Observations combined with a Model forecast… 
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Example: Estimating the Temperature Outside 

An observation has a value ( * ),  
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Example: Estimating the Temperature Outside 

An observation has a value ( * ),  

and an error distribution (red curve) that is associated with the 
instrument. 
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Example: Estimating the Temperature Outside 

Thermometer outside measures 1C.  

Instrument builder says thermometer is unbiased with +/- 0.8C gaussian 
error. 
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The red plot is               , probability of temperature given that To was 
observed. 

Example: Estimating the Temperature Outside 

Thermometer outside measures 1C.  

€ 

P T |To( )
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The green curve is               ; probability of temperature given all available 
prior information    . 

Example: Estimating the Temperature Outside 

We also have a prior estimate of temperature. 

€ 

P T |C( )

€ 

C
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Example: Estimating the Temperature Outside 

Prior information      can include: 

1.  Observations of things besides T; 

2.  Model forecast made using observations at earlier times; 

3.  A priori physical constraints  ( T > -273.15C ); 

4.  Climatological constraints  ( -30C < T < 40C ). 

€ 

C
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Combining the Prior Estimate and Observation 

€ 

P T |To,C( ) =
P To |T,C( )P T |C( )
Normalization

Bayes 
Theorem: 

Posterior: Probability 
of T given 

observations and 
Prior. Also called 

update or analysis. 

Prior 

Likelihood: Probability that To  is 
observed if T is true value and given 
prior information C. 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Combining the Prior Estimate and Observation 
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P T o | T , C ( ) P T | C ( ) 

normalization 
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Combining the Prior Estimate and Observation 
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Combining the Prior Estimate and Observation 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Consistent Color Scheme Throughout Tutorial 

Green = Prior 

Red = Observation 

Blue = Posterior 

Black = Truth   
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 
normalization 

Generally no analytic solution for Posterior. 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 
normalization 

Gaussian Prior and Likelihood -> Gaussian Posterior 
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For Gaussian prior and likelihood… 

Prior   

Likelihood   

Then, Posterior 

With   

Combining the Prior Estimate and Observation 

€ 

P T |C( ) = Normal Tp,σ p( )

€ 

P To |T,C( ) = Normal To,σ o( )

€ 

P T |To,C( ) = Normal Tu,σ u( )

€ 

σ u = σ p
−2 +σ o

−2( )
−1

€ 

Tu =σ u
2 σ p

−2Tp +σ o
−2To[ ]
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1.  Suppose we have a linear forecast model L 

A.  If temperature at time t1 = T1, then  
   temperature at t2 = t1 + Δt  is  T2 = L(T1) 

B.  Example: T2 = T1 + ΔtT1 

The One-Dimensional Kalman Filter 
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1.  Suppose we have a linear forecast model L. 

A.  If temperature at time t1 = T1, then  
   temperature at t2 = t1 + Δt  is  T2 = L(T1). 

B.  Example: T2 = T1 + ΔtT1 . 

2.  If posterior estimate at time t1 is Normal(Tu,1, σu,1) then  
   prior at t2 is Normal(Tp,2, σp,2). 

Tp,2 = Tu,1,+ ΔtTu,1 

σp,2  = (Δt + 1) σu,1  

The One-Dimensional Kalman Filter 
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1.  Suppose we have a linear forecast model L. 

A.  If temperature at time t1 = T1, then  
   temperature at t2 = t1 + Δt  is  T2 = L(T1). 

B.  Example: T2 = T1 + ΔtT1 . 

2.  If posterior estimate at time t1 is Normal(Tu,1, σu,1) then  
   prior at t2 is Normal(Tp,2, σp,2). 

3.  Given an observation at t2 with distribution Normal(to, σo) 
the likelihood is also Normal(to, σo). 

The One-Dimensional Kalman Filter 
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1.  Suppose we have a linear forecast model L. 

A.  If temperature at time t1 = T1, then  
   temperature at t2 = t1 + Δt  is  T2 = L(T1). 

B.  Example: T2 = T1 + ΔtT1 . 

2.  If posterior estimate at time t1 is Normal(Tu,1, σu,1) then  
   prior at t2 is Normal(Tp,2, σp,2). 

3.  Given an observation at t2 with distribution Normal(to, σo) 
the likelihood is also Normal(to, σo). 

4.  The posterior at t2 is Normal(Tu,2, σu,2) where Tu,2  and σu,2 
come from page 18. 

The One-Dimensional Kalman Filter 
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A One-Dimensional Ensemble Kalman Filter 

Represent a prior pdf by a sample (ensemble) of N values: 
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Use sample mean 
and sample standard deviation  
to determine a corresponding continuous distribution 

A One-Dimensional Ensemble Kalman Filter 

Represent a prior pdf by a sample (ensemble) of N values: 

€ 

T = Tn N
n=1

N

∑

€ 

σT = Tn −T ( )2 N −1( )
n=1

N

∑

€ 

Normal T ,σT( )
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A One-Dimensional Ensemble Kalman Filter:  
Model Advance 

If posterior ensemble at time t1 is T1,n,  n = 1, …, N 
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A One-Dimensional Ensemble Kalman Filter:  
Model Advance 

If posterior ensemble at time t1 is T1,n,  n = 1, …, N , 
advance each member to time t2 with model, T2,n = L(T1, n)  n = 1, …,N . 
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A One-Dimensional Ensemble Kalman Filter:  
Model Advance 

Same as advancing continuous pdf at time t1 … 
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A One-Dimensional Ensemble Kalman Filter:  
Model Advance 

Same as advancing continuous pdf at time t1 
to time t2 with model L. 
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A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Fit a Gaussian to the sample. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 



pg 31 SAMSI UQ Workshop; Sep. 2011  

Get the observation likelihood. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Compute the continuous posterior PDF. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Use a deterministic algorithm to ‘adjust’ the ensemble. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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First, ‘shift’ the ensemble to have the exact mean of the posterior. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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First, ‘shift’ the ensemble to have the exact mean of the posterior. 
Second, linearly contract to have the exact variance of the posterior. 

  Sample statistics are identical to Kalman filter. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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  (Ensemble) KF optimal for linear model, gaussian likelihood. 
  In KF, only mean and variance have meaning. 
  Variance defines the uncertainty. 

  Ensemble allows computation of many other statistics. 
  What do they mean? Not entirely clear. 

  Example: Kurtosis. Completely constrained by initial ensemble. 
       It is problem specific whether this is even defined! 

(See example set 1 in Appendix) 

UQ from an Ensemble Kalman Filter 
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Appendix: Matlab examples 
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Appendix: Matlab examples 
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The Rank Histogram: Evaluating Ensemble Performance 

Draw 5 values from a real-valued distribution. 
Call the first 4 ‘ensemble members’. 
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The Rank Histogram: Evaluating Ensemble Performance 

These partition the real line into 5 bins. 
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The Rank Histogram: Evaluating Ensemble Performance 

Call the 5th draw the ‘truth’. 
1/5 chance that this is in any given bin. 
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The Rank Histogram: Evaluating Ensemble Performance 

Rank histogram shows the frequency of the truth in 
each bin over many assimilations. 
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each bin over many assimilations. 
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The Rank Histogram: Evaluating Ensemble Performance 

Rank histogram shows the frequency of the truth in 
each bin over many assimilations. 
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The Rank Histogram: Evaluating Ensemble Performance 

Rank histogram shows the frequency of the truth in 
each bin over many assimilations. 
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The Rank Histogram: Evaluating Ensemble Performance 

Rank histograms for good ensembles should be 
uniform (caveat sampling noise). 
Want truth to look like random draw from ensemble. 
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The Rank Histogram: Evaluating Ensemble Performance 

A biased ensemble leads to skewed histograms. 
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The Rank Histogram: Evaluating Ensemble Performance 

An ensemble with too little spread gives a u-shape. 
This is the most common behavior for geophysics. 
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The Rank Histogram: Evaluating Ensemble Performance 

An ensemble with too much spread is peaked in 
the center. 
(See example set 1 in appendix) 
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Back to 1-Dimensional (Ensemble) Kalman Filter 

  All bets are off when model is nonlinear, 
      likelihood nongaussian. 

  Must assess quality of estimates for each case. 

  Example: A weakly-nonlinear 1D model: 
 dx/dt = x + 0.4|x|x 

(See example set 2 in appendix) 

  Ensemble statistics can become degenerate. 
  Nonlinear ensemble filters may address this but 
      beyond scope for today. 
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Ensemble Kalman Filter with Model Error 

  Welcome to the real world. Models aren’t 
perfect. 
  Model (and other) error can corrupt ensemble 
mean and variance. 

(See example set 3 part 1 in appendix) 

  Adapt to this by increasing uncertainty in prior. 
  Inflation is common method for ensembles. 
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Dealing with systematic error: Variance Inflation 

Observations + physical system => ‘true’ distribution. 
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Dealing with systematic error: Variance Inflation 

Observations + physical system => ‘true’ distribution. 
Model bias (and other errors) can shift actual prior. 

 Prior ensemble is too certain (needs more spread). 
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Dealing with systematic error: Variance Inflation 

Naïve solution: increase the spread in the prior. 
Give more weight to the observation, less to prior. 
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Ensemble Kalman Filter with Model Error 

  Errors in model (and other things) result in 
        too much certainty in prior. 
  Can use inflation to correct for this. 
  Generally tuned on dependent data set. 
  Adaptive methods exist but must be calibrated. 

(See example set 3 part 2 in appendix) 

  Uncertainty errors depend on forecast length. 
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Multivariate Ensemble Kalman Filter 

So far, we have an observation likelihood for single variable. 

Suppose the model prior has additional variables. 

Use linear regression to update additional variables. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
What should happen to the 
unobserved variable? 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Compute increments for prior 
ensemble members of observed 
variable. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Using only increments 
guarantees that if observation 
had no impact on observed 
variable, unobserved variable is 
unchanged (highly desirable). 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
How should the unobserved 
variable be impacted? 
First choice: least squares. 
Equivalent to linear regression. 
Same as assuming binormal 
prior. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
How should the unobserved 
variable be impacted? 
First choice: least squares. 
Begin by finding least squares 
fit. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
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onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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The Lorenz63 3-Variable ‘Chaotic’ Model 

 Two lobed attractor. 
 State orbits lobes, switches lobes sporadically. 
 Nonlinear if observations are sparse. 
 Qualitative uncertainty information available from ensemble. 
 Nongaussian distributions are sampled. 
 Quantitative uncertainty requires careful calibration. 

(See Example 4 in the appendix) 
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Ensemble Kalman Filters with Large Models 

 Kalman filter is too costly (time and storage) for large models. 
 Ensemble filters can be used for very large applications. 
 Sampling error when computing covariances may become large. 
 Spurious correlations between unrelated observations and state 
variables contaminate results. 
 Leads to further uncertainty underestimates. 
 Can be compensated by a priori limits on what state variables are 
impacted by an observation. Called ‘localization’. 
 Requires even more calibration. 
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The Lorenz96 40-Variable ‘Chaotic’ Model 

 Something like weather systems around a latitude circle. 
 Has spurious correlations for small ensembles. 
 Basic implementation of ensemble filter leads to bad uncertainty 
estimates. 
 Both inflation and localization can improve performance. 
 Quantitative uncertainty requires careful calibration.  

(See Example 5 in the appendix) 
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Uncertainty and Ensemble Kalman Filters: Conclusions 

 Ensemble KF variance is exact quantification of uncertainty when 
things are linear, gaussian, perfect, and ensemble is large enough. 

 Too little uncertainty nearly universal for geophysical applications. 

 Uncertainty errors are a function of forecast lead time. 

 Adaptive algorithms like inflation improve uncertainty estimates. 

 Quantitative uncertainty estimates require careful calibration. 

 Out of sample estimates (climate change) are tenuous. 
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Appendix: Matlab examples 

This is an outline of the live matlab demos from NCAR’s DART system that were 
used to support this tutorial. The matlab code is available by checking out the DART 
system from NCAR at: 
http://www2.image.ucar.edu/forms/dart-software-download 

The example scripts can be found in the DART directory: 
DART_LAB/matlab 

Some of the features of the GUI’s for the exercises do not work due to bugs in 
Matlab releases 2010a and 2010b but should work in earlier and later releases. 
Many more features of these matlab scripts are described in the tutorial files in the 
DART directory: 
DART_LAB/presentation 
These presentations are a complement and extension of things presented in this 
tutorial. 
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Appendix: Matlab examples 

Example Set 1:  
Use matlab script oned_model 
Change the “Ens. Size” to 10 
Select “Start Free Run” 
Observe that the spread curve in the second diagnostic panel quickly converges to 
have the same prior and posterior values. The rms error varies with time due to 
observation error, but its time mean should be the same as the spread. 
Restart this exercise several times to see that the kurtosis curve in the third panel 
also converges immediately, but to values that change with every randomly selected 
initial ensemble. Also note the behavior of the rank histograms for this case. They 
may not be uniform even though the ensemble filter is the optimal solution. In fact, 
they can be made arbitrarily nonuniform by the selection of the initial conditions. 



pg 84 DART-LAB Tutorial  --  June 09 

Appendix: Matlab examples 
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Appendix: Matlab examples 

Example Set 2:  
Use matlab script oned_model 
Change the “Ens. Size” to 10 
Change “Nonlin. A” to 0.4 
Select “Start Free Run” 

This examines what happens when the model is nonlinear. Observe the evolution of 
the rms error and spread in the second panel and the kurtosis in the third panel. 
Also observe the ensemble prior distribution (green) in the first panel and in the 
separate plot on the control panel (where you changed the ensemble size). In many 
cases, the ensemble will become degenerate with all but one of the ensemble 
members collapsing while the other stays separate. Observe the impact on the rank 
histograms as this evolves. 
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Appendix: Matlab examples 

Example Set 3:  
Use matlab script oned_model 
Change the “Ens. Size” to 10 
Change “Model Bias” to 1 
Select “Start Free Run” 

This examines what happens when the model used to assimilate observations is 
biased compared to the model that generated the observations (an imperfect model 
study). The model for the assimilation adds 1 to what the perfect model would do at 
each time step.  Observe the evolution of the rms error and spread in the second 
panel and the rank histograms. Now, try adding some uncertainty to the prior 
ensemble using inflation by setting “Inflation” to 1.5. This should impact all aspects 
of the assimilation.  
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Appendix: Matlab examples 

Example Set 4:  
Use matlab script run_lorenz_63 
Select “Start Free Run” 

This run without assimilation shows how uncertainty grows in an ensemble forecast 
in the 3 variable Lorenz model. After a few trips around the attractor select “Stop 
Free Run”. Then turn on an ensemble filter assimilation by changing “No 
Assimilation “ to “EAKF”. Continue the run by selecting “Start Free Run” and 
observe how the ensemble evolves. You can stop the advance again and use the 
matlab rotation feature to study the structure of the ensemble. 
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Appendix: Matlab examples 

Example Set 5:  
Use matlab script run_lorenz_96 
Select “Start Free Run” 

This run without assimilation shows how uncertainty grows in an ensemble forecast 
in the 40 variable model. After about time=40, select “Stop Free Run” and start an 
assimilation by changing “No Assimilation” to “EAKF” and selecting “Start Free Run”. 
Exploring the use of a localization of 0.2 and/or an inflation of 1.1 helps to show how 
estimates of uncertainty can be improved by modifying the base ensemble Kalman 
filter. 


