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Introduction

I GITM underestimates mass density when compared with CHAMP
measurements.

I One way to correct this is to use CHAMP measurements to estimate
GITM parameters that would compensate for modeling error.

I One approach is EAKF, which is part of the Data Assimilation
Research Testbed (DART).
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CHAMP measures mass density
(ρ).

GITM underestimates ρ at
CHAMP locations.
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Dawn-dusk diagram showing CHAMP and
GRACE orbits, as well as Ann Arbor and
subsolar point. Color represents ρ at
400km at 02:32 UT.

Global Ionosphere-Thermosphere
Model (GITM)
I is an upper atmosphere model,
I is a contractive system (i.e.

strongly forced),
I does not assume a hydrostatic

solution, and
I does not use a pressure-based

coordinate system.
The last two features allow for
more realistic physics in auroral
region.

GITM: Inputs and Outputs

Inputs (parameters) Outputs

Solar flux index F10.7 → → Ns Neutral number densities
Cooling rates Le →

G

→ ρ Neutral mass density
Heating efficiency ε → I → p Neutral pressure
Thermal conductivity κc → T → T Neutral temperature normalized

· · · · · · →

M

→ u Neutral velocity
→ Nj Ion number densities
→ Tj Ion temperature normalized
→ v Ion velocity

GITM: Vertical Equations

I Vertical solver accounts for all the source terms.
I Vertical continuity, momentum, and temperature equations are
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EAKF

I First, define joint state-measurement vector as zk =

[
xk
yk

]
.

I Then, N EAKF ensemble members can be updated via

ẑ−k,i = [fk−1(x̂+
k−1,i, uk−1, 0); hk(x̂+

k−1,i, 0)], (6)

P−k =
∑N

i=1
(ẑ−k,i − µẑ

−
k )(ẑ−k,i − µẑ

−
k )T/(N − 1), (7)

Ak = (FTk )−1GTk (UTk )−1BTk (GTk )−1FTk , (8)
P+
k = [(P−k )−1 +HTR−1

k H]−1, (9)
µẑ+
k = P+

k [(P−k )−1µẑ−k +HTR−1
k yk], (10)

ẑ+
k,i = ATk (ẑ−k,i − µẑ

−
k ) + µẑ+

k . (11)

where
I Fk comes from SVD of P−k = FkDkFTk .
I Gk is a square root of Dk, as in Gk = D

1/2
k .

I Uk comes from SVD of GTk F
T
k H

TR−1HFkGk = UkJkU
T
k .

IBk is a square root of Bk, as in Bk = (I + Jk)−1/2.

Example: Estimating a Time-Varying Parameter

I Consider the linear system

xk = 0.5xk−1 + uk−1, uk = 1.0 + sin(0.5k), (12)
yk = xk + vk, vk ∼ N(0, 0.2). (13)

I Input (driver, parameter) uk can be estimated by augmenting the
state vector xk = [xk ; uk ] and using the architecture given by

+

vk
+ yk

EAKF

û+
k+1

û−k

uk xk = 0.5xk−1 + uk−1

x̂k = 0.5x̂k−1 + ûk−1

x̂−k
x̂+
k+1

I Example without and with parameter inflation:

1 5 10 15 20 25 30 35 40 45
−4

−2

0

2

4

6

S
ta

te
s
k

 

 

S tate s k

Measu rem ent y k

EAKF mean µ [ ŝ k]
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Absence of measurements of the
input uk (top plot) results in filter
divergence (ensemble spread
(σ[ûk] and σ[x̂k]) goes to zero and
ensemble mean deviates away
from the true input and state).
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Using parameter variance inflation

û−k,i =

√√√√ σ2
i

σ2[û−k ]
(û−k,i − µ[û−k ]) + µ[û−k ]

with σi = 0.2 improves performance.

Localization

I The effect of assimilation can be restricted to a region to avoid
updating uncorrelated states.

Localization function with
horizontal cutoff of 30◦ is shown to
the right and below, and vertical
cutoff of 100km is shown bottom
right.

Results: Simulated Data from Subsolar Point

I The introductory example is a perfect model experiment, i.e. it takes
measurements from a GITM truth simulation with F10.7 fixed at 150.

I EAKF assimilation window is 30 minutes, measurements are available
every 1 minute, horizontal cutoff of 30◦, and vertical cutoff of 100km.

I 20 ensemble members are prespun for 2 days prior to Dec 01 with
F̂10.7 values coming from normal distribution ∼ N(130, 25).

I F̂−10.7 is inflated using σi = 7.

ρ estimates at subsolar
point (measurement
location). We assume
measurement error
variance (R) for ρ to be
2.6× 10−13kg/m3 (an
average value taken
from real CHAMP data
uncertainty for the two
days in question).

ρ estimates 400km
above Ann Arbor, MI.
Here ρ estimates
approach the truth data,
but only when subsolar
point measurements are
“close” to Ann Arbor
(localization cutoff is
tripled in this and the
next plot to demonstrate
periods of proximity).

ρ at CHAMP location
(diagnostic location).
This figure demonstrates
that initially EAKF
underestimates ρ at
CHAMP location, but the
estimates improve as
time increases (this can
be seen more explicitly
in the next plot).
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RMSPE (2nd day) along CHAMP path = 3%

GITM without EAKF
EAKF posterior Root mean square

percentage error
(RMSPE) in ρ along
CHAMP orbit averaged
over 90 minutes. We
define RMSPE

4
=

√
(ρ−ρ̂)2√
ρ2

.

RMSPE for the second
day along CHAMP track
in this case is computed
to be about 3%.

F10.7 estimate. After
starting from initial
distribution centered
about 130 (stretched
horizontally for
demonstrational
purposes), EAKF
ensemble mean
approaches the true
value.

Simulated Data from CHAMP

I This example is also a perfect model experiment.
I 20 ensemble members are prespun for 2 days prior to Dec 01 with
F̂10.7 values coming from normal distribution ∼ N(130, 25).

I F̂−10.7 is inflated using σi = 7.
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RMSPE (2nd day) along CHAMP path = 2%

GITM without EAKF
EAKF posterior

ρ RMSPE along CHAMP
orbit averaged over 90

minutes. RMSPE for the
second day along
CHAMP track in this
case is computed to be
about 2%.

F10.7 estimate. After
starting from initial
distribution centered
about 130, EAKF
ensemble mean
approaches the true
value.

Real Data from CHAMP

I This example draws its measurements from real CHAMP data.
I 20 ensemble members are prespun for 2 days prior to Dec 01 with
F̂10.7 values coming from normal distribution ∼ N(130, 25).

I F̂−10.7 is inflated using σi = 4.47.
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RMSPE (2nd day) along CHAMP path = 9%

GITM with F10.7 from NOAA
GITM without EAKF
EAKF posterior
Percent of observations used

Here, ρ RMSPE along
CHAMP orbit is defined
as
RMSPE

4
=

√
(ρCHAMP−ρ̂)2√
ρ2CHAMP

and is computed for
I the mean case

(F10.7 = 130) to be 58%,
I the NOAA case

(F10.7 = 150) - 41%,
I the EAKF case - 9%.

Here, the F10.7 estimate
does not converge to the
NOAA-measured value
of 150, but instead
compensated for model
mismatch.

Conclusions and Future Work

I EAKF was successfully used to estimate GITM states (Ns, Nj, T , Tj,
u, v) and a parameter (F10.7) using CHAMP ρ measurements.

I One proposed extension is estimating the full solar spectrum at the
top of the atmosphere (I∞(λ)).

I Another possible extension is using Total Electron Content (TEC)
measurements to estimate heating efficiency (ε).
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