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Is DA different for NWP and ecosystem models?

_ Data Assimilation in NWP Data Assimilation in CLM

Main objective  Improved initial conditions Process understanding
Forecast improvement Regional quantification
Forecasting
Dynamics Physics — Physical, biological, chemical —
essentially well known from first Only partially known, empirical
principles relationships
Observations High spatial and temporal density  Very different spatial and temporal
characteristics
Mathematical Optimization of initial conditions Initial value problem (e.g. pools)
problem Boundary conditions (e.g. fluxes)

Parameter optimization
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A generic ensemble filter system like DART needs:

1. A way to make model forecasts.

2. A way to estimate what the observation would be — given the
model state. This is the observation operator — h.

- — y The increments are
regressed onto as
many CLM state
variables as you

t+1 like. If there is a
correlation, the CLM

in the restart file.

—>
—» state gets adjusted
g
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Multi-instance CESM code

« A multi-instance version of CESM has been developed that more
easily facilitates ensemble-based DA

 For example, multiple land models can be driven by multiple
data-atmospheres in a single executable.

« This capability should be available in the next CESM release.

\
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Assimilation of MODIS snow cover fraction

« 80 member ensemble for onset of NH winter
 Assimilate once per day

 Level 3 MODIS product —regridded to a daily 1 degree grid
* Observation error variance is 0.1 (for lack of a better value)
* Observations can impact state variables within 200km
 CLM variable to be updated is the snow water equivalent “

”
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An early result: assimilation of MODIS snowcover fraction
on total snow water equivalent in CLM.

PRIOR: ensemble mean H2OSNO for 30-Nov-2002
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What can CLM-DART do right now:

Use the CESM multi-instance capability to run simultaneous
instances of CLM.

Force each instance with different realistic atmospheric
conditions (say, from an offline CAM/DART assimilation).

Assimilate observations every time CESM stops.

Modify the CLM restart file contents to be more consistent
with observations — and not just at the observation location!

Use CLM history files to provide model states to compare with
observations, i.e. the observation operator IS the history file
(GRACE observations, NEE, ... ).

CESM 2012




What can CLM-DART do right now:

Use the CESM multi-instance capability to run up to 80
simultaneous instances of CLM

Force each instance with different realistic atmospheric
conditions (from an offline CAM/DART assimilation)

Use the multi-instance capability to assimilate every midnight

Modify the CLM restart file contents to be more consistent
with observations — and not just at the observation location

Can use CLM history files to provide model states to compare
with observations, i.e. the observation operator IS the history

file (GRACE observations, NEE, ...)
Defeat any (and all?) balance checks Erik can throw at us ...

Blow your file quota on any machine, any time, without
breaking a sweat ...
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Creating the initial ensemble of CLM.

Replicate what we have N times.
Use a unique (and different!) realistic DATM for each.
Run them forward for “a long time”.

model time ) )
spun up

- Getting a proper initial
‘ — —_— ensemble is an area of

“along time” active research.

We don’t know how much spread we NEED to
capture the uncertainty in the system.
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The ensemble advantage.

You can represent uncertainty.

In a free run,
the ensemble spread
frequently grows.

With a good assimilation:
ensemble spread ultimately
remains stable and small
enough to be informative

\ observa‘uon tlmes
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Assimilation uses 80
members of 2° FV CAM
forced by a single ocean
(Hadley+ NCEP-0OI2)
and produces a very
120E ‘yn .
\ competitive reanalysis.

W
/-

Atmospheric Reanalysis

O(1 million)
atmospheric obs are
assimilated every

day.

1998-2010
4x daily

Each CLM ensemble IS available.

member is forced with a
different atmospheric
reanalysis member.

Generates spread in
the land model.
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CLM-DART coupling

* Our goal has been to “Do no harm” to CLM

« DART’s namelist allows you to choose what CLM variables get
updated by the assimilation

 New routines communicate between CLM and DART
« At predetermined assimilation intervals:

CESM/CLM stops and writes restart and history files

DART state vector extracted from CLM restart & history files
Increments calculated and applied to DART state vector
CLM restart files updated with adjusted DART state vector
CESM postrun script executes

a0~

Proof-of-concept using Perfect Model Experiment of leafc follows.

e 18 synthetic observation locations of leaf carbon
* 40 CLM instances spun up for several months
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Innovation map of leafc on 4 May 2000

« Information from a site is extrapolated across space through the
covariance matrix represented by the ensemble of CLM instances.

« Generally, largest updates closest to observation sites.
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Time series of “truth”, obs and 40 ens members

40 member ensemble of Teafc in a single grid cell

corresponding to 60.21°W, 2.61°S (Manaus, Brazil).

Ensemble members (blue lines) show impact of assimilation.
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The Role of Trace Gas Flux
Networks in the Biogeosciences

meteorological sen-
providing continuous
1 array of atmaospheric
h as temperature, humid-
the concentration of car-
(New et ol , 1999; Tans et al.,
These measurements provide input
d climate models and are key
ends in climate, greenhouse
air pollution. Yet to understand
1y these atmospheric state vari-
% vary in time and space, biogeoscien-
s need 1o know where, when, and at what
stes smportamt gases are flowing between
« land and the atmosphere. Tracking
race gas fluxes provides information on
t or microbial metabolism and climate-
mvstem interactions

e existence of trace gas flux networks
y new phenomenon, dating back
research in 1984, The first gas flux mea
srement networks were regional in scope
sl were designed to track pollutant gases
such as sulfur dioxide. ozone nitric acid
and nitrogen dioxide Atmospheric obser
vations and model dirrsdatiome wes i
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A key attribute of the eddy covariance
method is its ability to measure fluxes in
situ with minimal disturbance to the envi-
ronment, at a spatial scale of hundreds of
meters, and on time scales spanning hours,
days, and years

For the eddy covariance method to work,
trace gas sensors must be able to respond
to fluctuations in atmospheric gas concen-
trations over as little as a tenth of a second,
maintain a stable calibration, possess a high
signal-to-noise ratio, and, in cases where
pumps are needed to move air to the sen-
sor, have access to a power line. The cur-
rent generation of carbon dioxide and water
vapor sensors easily meets these criteria,
and a revolution in instrument development
is producing trace gas sensors capable of
measuring a broad suite of compounds at
high sampling rates with high sensitivity and
precision. Those measuring stable isotopes
of carbon, oxygen, and carbonyl sulfide can
help partition fluxes between the vegetation
and the soll. Those measuring methane and
nitrous oxide can assess microbial activity

CESM 2012

The components of a flux network: (top left) An eddy covariance fux tower, which acts as one
site in (top right) a giobal network (FLUXNET. a component of NASA's Oak Ridge National Lab
ratory Distributed Active Archive Center (ORNL DAAC)) that produces data that are merged ani
dls@MMMthn@hOmwmmmm.Minmju@mw
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Problems to be solved:

Proper initial ensemble
Creating snow with the right characteristics
Bounded quantities

When all ensembles have identical values the observations
cannot have any effect with the current algorithms

Forward operators — many flux observations are over
timescales that are inconvenient — need soil moisture from last
month and now...

CLM has a lot of carbon species, hard to support all the
forward operators required

CLM’s abstraction of grid cells, land units, etc., make the
treatment of observations very peculiar. All land units in a grid
cell share a location. Easy to have ‘contradictory’ observations.
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For more information:

Data

Assimilation

Research
Testbed

www.image.ucar.edu/DAReS/DART

dart@ucar.edu

h NCAR i@(f CESM 2012




An example of data assimilation in the CLM

* 40 member ensemble of CLM
forced with meteorology from
40 different data atmospheres Global Leafc, 1 May 2000
in 2° grid global runs

« Leaf carbon is a key variable in *
CLM strongly influencing o -
productivity, evapotranspiration B
and radiation dynamics B

 Run 1 ensemble member
forward from 1 May 2000,
harvesting daily observations
of leafc at 16 FLUXNET
locations

 Run 40 ensemble members
forward from 1 May 2000 for 30
days, assimilating synthetic
observations
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A generic ensemble filter system like DART needs:

1. A way to make model forecasts;
2. A way to compute the observation operators, h.

- — >y The increments are
regressed onto as
many CLM state
variables as you

t+1 like. If there is a
correlation, the CLM

—
—» state gets adjusted
_, intherestart file.
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cat << EOF >! user_nl_clm
&clm_inparm

History file games: Ty

We can query a history file for the CLM state at

hist_fincl2 = 'NEP'
hist_nhtfrq =-24,1,

hist._ mfilt = 1,48
hist_avgflag _pertape ='A','A’
/

<A ~ N

! ! ! = <l_>| ||<_|| |>y
t+1

—

—{

\ "
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The HARD part is: What do we do when only SOME
(or none!) of the ensembles have [snow,leaves,...]
and the observations indicate otherwise?

Corn Snow? Sugar Snow?

Wet Snow?
New Snow? Dry Snow?

“Champagne Powder”? Crusty Snow?

?
Slushy Snow- Old Snow?
Dirty Snow?

3
Early Season Snow? Packed Snow:

Snow Density? Snow Albedo?

ok The ensemble must have some uncertainty, it
AW cannot use the same value for all. The model
expert must provide guidance. It’s even worse
for the hundreds of carbon-based quantities!

5 e
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Details

 DART allows you to choose what CLIVI
variables get updated by the assimilation.

&clm_vars nml

clm _state variables = 'frac sno', "KIND SNOWCOVER FRAC',
'DZSNO ', '"KIND SNOW_THICKNESS',
'H20SNO ', '"KIND SNOW WATER’,
'T_SOISNO', '"KIND SOIL TEMPERATURE',
‘leafc’, ‘KIND LEAF _CARBON’ /

e These are read from a CLM restart file and
reinserted after the assimilation.

* Potential problem ... balance/consistency?
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Harvard Forest — monthly averages 1998-2010ish
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Niwot Ridge
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Proof-of-concept with leaf carbon

Prior and 5/1/2000 5/2/2000 5/3/2000 5/4/2000 5/5/2000
posterior 03 03 0.3 0.3 0.3
probability 0.2 0.2 0.2 0.2 0.2
distributions of o ?k o o1 01 01
Ieaf carbon in a % 0305 310 315 0305 310 315 0305 310 315 0305 310 315 0305 310 315
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60°W, 4°S for > o
0.2 0.2 0.2 0.2
nine days of o o o o
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Ensemble Filter for Large Geophysical Models

1. Use model to advance ensemble (3 members here) to time at which next
observation becomes available.

Ensemble state

estimate after using Ensemble state
previous observation at time of next
(analysis) observation

tk/ * (prior)

* — {k+1

* — -
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Ensemble Filter for Large Geophysical Models

2. Get prior ensemble sample of observation, y = h(x), by
applying forward operator h to each ensemble member.

Theory: observations

h h from instruments with
h uncorrelated errors can
be done sequentially.
tk
* tk+1
* — -

i NCAR @f CESM 2012
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Ensemble Filter for Large Geophysical Models

3. Get observed value and observational
error distribution from observing system.

- ; i y
o M h

tk

- S

CESM 2012
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Ensemble Filter for Large Geophysical Models

4. Find the increments for the prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

<~/\-» ﬂ/—n—u—l—\u-v—»

Note: Difference between
various ensemble filters is

ik primarily in observation
o increment calculation.
e v
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Ensemble Filter for Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

Theory: impact of
observation increments on
- - each state variable can be
handled independently!
ENCAR @ CESM 2012 e I' ‘;-‘vll/ y 32
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Ensemble Filter for Large Geophysical Models

6. When all ensemble members for each state variable
are updated, there is a new analysis. Integrate to time
of next observation ...

- /\>y @»}f

h h\ h

tk+2
tk N >
* e —
R — P 4 —
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