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FIG. 1. Schematic of the extended Kalman filter (EKF) and the
ensemble Kalman filter (EnKF).

servation at the update time. The EnKF, on the other
hand, propagates an ensemble of state vectors in par-
allel, each state vector representing a particular reali-
zation of the possible model trajectories (e.g., with cer-
tain random errors in model parameters and/or a par-
ticular set of errors in forcing). The EnKF does not
explicitly integrate the state error covariance but com-
putes it instead diagnostically from the distribution of
the model states across the ensemble.
During the update step, the EKF revises its estimate

of the state vector (from to ) using the observation2 1x xk k

and the prognostic state error covariance . This re-2P k

duces the uncertainty in the state estimate, which is
reflected in the EKF update of the state error covariance
(from to ). The EnKF, on the other hand, updates2 1P Pkk

each ensemble member separately, using the observa-
tion and the diagnosed state error covariance . In the2P k

EnKF, the reduction of the uncertainty is reflected in the
reduction of the ensemble spread. While the EKF state
estimate at any time is simply the value of the state
vector or , the EnKF state estimate is given by2 1x xk k

the mean of the ensemble members.
We now present a more formal discussion of the two

approaches. Our knowledge of the state at the initial
time k 5 0 is reflected by the mean state and its2x 0
covariance , which are used to initialize the EKF. The2P 0
EnKF is initialized by generating an ensemble of initial
condition fields , i 5 1, . . . , N, with mean andi2 2x x0 0
covariance . We start the assimilation cycle by cal-2P 0

culating a matrix of weights Kk (the Kalman gain) for
the update:

2 2 21T TK 5 P H [H P H 1 R ] .k k k k kk k (3)
If no observations are available at time k we formally
set Kk [ 0. Next, we update the state estimate (EKF)
or each ensemble member (EnKF) using a linear com-
bination of forecast model states and the observations:

1 2 2EKF: x 5 x 1 K [y 2 H x ],k kk k k k

1 2 2P 5 P 2 K H P ; (4a)k k k k k

i1 i2 i2 iEnKF: x 5 x 1 K [y 2 H x 1 v ],k kk k k k k

i 5 1, . . . , N. (4b)
Here, the superscripts 2 and 1 refer to the state esti-
mates, individual ensemble members, or covariances be-
fore and after the update, respectively. They are also
known as forecast and analysis, respectively. Note that
in the EnKF the data are perturbed by adding a random
realization of the measurement error (Burgers et al.ivk
1998).
In the forecast step, the EKF estimate is propagated

forward in time with the nonlinear model, and in the
EnKF each ensemble member is integrated using a cor-
responding ensemble of N random realizations of model
error fields :iwk

2 1EKF: x 5 f (x ); (5a)k11 k k

i2 i1 iEnKF: x 5 f (x ) 1 w , i 5 1, . . . , N. (5b)k11 k k k

We also propagate the state error covariance to account for
the evolution of the uncertainty in the state estimates:

2 1 TEKF: P 5 F P F 1 Q ,k11 k k k k

] fm[F ] 5 , m, n 5 1, . . . , N ; (6a)k mn x)]x 2n xk

1
2 TEnKF: P 5 D D ,k11 k11 k11N 2 1

12 2 N2 2D 5 [x 2 x , . . . , x 2 x ],k11 k11 k11 k11 k11

N1
2 i2x 5 x . (6b)Ok11 k11N i51

The importance of error covariance propagation is ev-
ident from Eq. (3), which describes how the optimal
weights for the update depend on the error covariances.
In the EKF, is obtained by propagating the posterior2P k

state error covariance from the last update time with a
linearized matrix dynamic equation (6a). Integrating this
equation for large Nx is very computationally demand-
ing. This makes the application of the EKF to large-
scale environmental assimilation problems impossible
unless further approximations are made. In this study
we use the EKF implementation of Walker and Houser
(2001), in which all correlations between different

Reichle et al. (2002) 

P(X | OBS)  =       P(OBS | X).P(X) 
                            normalization factor 

X = state variable (e.g., soil moisture) 
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FIG. 1. Schematic of the extended Kalman filter (EKF) and the
ensemble Kalman filter (EnKF).

servation at the update time. The EnKF, on the other
hand, propagates an ensemble of state vectors in par-
allel, each state vector representing a particular reali-
zation of the possible model trajectories (e.g., with cer-
tain random errors in model parameters and/or a par-
ticular set of errors in forcing). The EnKF does not
explicitly integrate the state error covariance but com-
putes it instead diagnostically from the distribution of
the model states across the ensemble.
During the update step, the EKF revises its estimate

of the state vector (from to ) using the observation2 1x xk k

and the prognostic state error covariance . This re-2P k

duces the uncertainty in the state estimate, which is
reflected in the EKF update of the state error covariance
(from to ). The EnKF, on the other hand, updates2 1P Pkk

each ensemble member separately, using the observa-
tion and the diagnosed state error covariance . In the2P k

EnKF, the reduction of the uncertainty is reflected in the
reduction of the ensemble spread. While the EKF state
estimate at any time is simply the value of the state
vector or , the EnKF state estimate is given by2 1x xk k

the mean of the ensemble members.
We now present a more formal discussion of the two

approaches. Our knowledge of the state at the initial
time k 5 0 is reflected by the mean state and its2x 0
covariance , which are used to initialize the EKF. The2P 0
EnKF is initialized by generating an ensemble of initial
condition fields , i 5 1, . . . , N, with mean andi2 2x x0 0
covariance . We start the assimilation cycle by cal-2P 0

culating a matrix of weights Kk (the Kalman gain) for
the update:

2 2 21T TK 5 P H [H P H 1 R ] .k k k k kk k (3)
If no observations are available at time k we formally
set Kk [ 0. Next, we update the state estimate (EKF)
or each ensemble member (EnKF) using a linear com-
bination of forecast model states and the observations:

1 2 2EKF: x 5 x 1 K [y 2 H x ],k kk k k k

1 2 2P 5 P 2 K H P ; (4a)k k k k k

i1 i2 i2 iEnKF: x 5 x 1 K [y 2 H x 1 v ],k kk k k k k

i 5 1, . . . , N. (4b)
Here, the superscripts 2 and 1 refer to the state esti-
mates, individual ensemble members, or covariances be-
fore and after the update, respectively. They are also
known as forecast and analysis, respectively. Note that
in the EnKF the data are perturbed by adding a random
realization of the measurement error (Burgers et al.ivk
1998).
In the forecast step, the EKF estimate is propagated

forward in time with the nonlinear model, and in the
EnKF each ensemble member is integrated using a cor-
responding ensemble of N random realizations of model
error fields :iwk

2 1EKF: x 5 f (x ); (5a)k11 k k

i2 i1 iEnKF: x 5 f (x ) 1 w , i 5 1, . . . , N. (5b)k11 k k k

We also propagate the state error covariance to account for
the evolution of the uncertainty in the state estimates:

2 1 TEKF: P 5 F P F 1 Q ,k11 k k k k

] fm[F ] 5 , m, n 5 1, . . . , N ; (6a)k mn x)]x 2n xk

1
2 TEnKF: P 5 D D ,k11 k11 k11N 2 1

12 2 N2 2D 5 [x 2 x , . . . , x 2 x ],k11 k11 k11 k11 k11

N1
2 i2x 5 x . (6b)Ok11 k11N i51

The importance of error covariance propagation is ev-
ident from Eq. (3), which describes how the optimal
weights for the update depend on the error covariances.
In the EKF, is obtained by propagating the posterior2P k

state error covariance from the last update time with a
linearized matrix dynamic equation (6a). Integrating this
equation for large Nx is very computationally demand-
ing. This makes the application of the EKF to large-
scale environmental assimilation problems impossible
unless further approximations are made. In this study
we use the EKF implementation of Walker and Houser
(2001), in which all correlations between different

Reichle et al. (2002) 
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FIG. 1. Schematic of the extended Kalman filter (EKF) and the
ensemble Kalman filter (EnKF).

servation at the update time. The EnKF, on the other
hand, propagates an ensemble of state vectors in par-
allel, each state vector representing a particular reali-
zation of the possible model trajectories (e.g., with cer-
tain random errors in model parameters and/or a par-
ticular set of errors in forcing). The EnKF does not
explicitly integrate the state error covariance but com-
putes it instead diagnostically from the distribution of
the model states across the ensemble.
During the update step, the EKF revises its estimate

of the state vector (from to ) using the observation2 1x xk k

and the prognostic state error covariance . This re-2P k

duces the uncertainty in the state estimate, which is
reflected in the EKF update of the state error covariance
(from to ). The EnKF, on the other hand, updates2 1P Pkk

each ensemble member separately, using the observa-
tion and the diagnosed state error covariance . In the2P k

EnKF, the reduction of the uncertainty is reflected in the
reduction of the ensemble spread. While the EKF state
estimate at any time is simply the value of the state
vector or , the EnKF state estimate is given by2 1x xk k

the mean of the ensemble members.
We now present a more formal discussion of the two

approaches. Our knowledge of the state at the initial
time k 5 0 is reflected by the mean state and its2x 0
covariance , which are used to initialize the EKF. The2P 0
EnKF is initialized by generating an ensemble of initial
condition fields , i 5 1, . . . , N, with mean andi2 2x x0 0
covariance . We start the assimilation cycle by cal-2P 0

culating a matrix of weights Kk (the Kalman gain) for
the update:

2 2 21T TK 5 P H [H P H 1 R ] .k k k k kk k (3)
If no observations are available at time k we formally
set Kk [ 0. Next, we update the state estimate (EKF)
or each ensemble member (EnKF) using a linear com-
bination of forecast model states and the observations:

1 2 2EKF: x 5 x 1 K [y 2 H x ],k kk k k k

1 2 2P 5 P 2 K H P ; (4a)k k k k k

i1 i2 i2 iEnKF: x 5 x 1 K [y 2 H x 1 v ],k kk k k k k

i 5 1, . . . , N. (4b)
Here, the superscripts 2 and 1 refer to the state esti-
mates, individual ensemble members, or covariances be-
fore and after the update, respectively. They are also
known as forecast and analysis, respectively. Note that
in the EnKF the data are perturbed by adding a random
realization of the measurement error (Burgers et al.ivk
1998).
In the forecast step, the EKF estimate is propagated

forward in time with the nonlinear model, and in the
EnKF each ensemble member is integrated using a cor-
responding ensemble of N random realizations of model
error fields :iwk

2 1EKF: x 5 f (x ); (5a)k11 k k

i2 i1 iEnKF: x 5 f (x ) 1 w , i 5 1, . . . , N. (5b)k11 k k k

We also propagate the state error covariance to account for
the evolution of the uncertainty in the state estimates:

2 1 TEKF: P 5 F P F 1 Q ,k11 k k k k

] fm[F ] 5 , m, n 5 1, . . . , N ; (6a)k mn x)]x 2n xk

1
2 TEnKF: P 5 D D ,k11 k11 k11N 2 1

12 2 N2 2D 5 [x 2 x , . . . , x 2 x ],k11 k11 k11 k11 k11

N1
2 i2x 5 x . (6b)Ok11 k11N i51

The importance of error covariance propagation is ev-
ident from Eq. (3), which describes how the optimal
weights for the update depend on the error covariances.
In the EKF, is obtained by propagating the posterior2P k

state error covariance from the last update time with a
linearized matrix dynamic equation (6a). Integrating this
equation for large Nx is very computationally demand-
ing. This makes the application of the EKF to large-
scale environmental assimilation problems impossible
unless further approximations are made. In this study
we use the EKF implementation of Walker and Houser
(2001), in which all correlations between different

Reichle et al. (2002) 
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FIG. 1. Schematic of the extended Kalman filter (EKF) and the
ensemble Kalman filter (EnKF).

servation at the update time. The EnKF, on the other
hand, propagates an ensemble of state vectors in par-
allel, each state vector representing a particular reali-
zation of the possible model trajectories (e.g., with cer-
tain random errors in model parameters and/or a par-
ticular set of errors in forcing). The EnKF does not
explicitly integrate the state error covariance but com-
putes it instead diagnostically from the distribution of
the model states across the ensemble.
During the update step, the EKF revises its estimate

of the state vector (from to ) using the observation2 1x xk k

and the prognostic state error covariance . This re-2P k

duces the uncertainty in the state estimate, which is
reflected in the EKF update of the state error covariance
(from to ). The EnKF, on the other hand, updates2 1P Pkk

each ensemble member separately, using the observa-
tion and the diagnosed state error covariance . In the2P k

EnKF, the reduction of the uncertainty is reflected in the
reduction of the ensemble spread. While the EKF state
estimate at any time is simply the value of the state
vector or , the EnKF state estimate is given by2 1x xk k

the mean of the ensemble members.
We now present a more formal discussion of the two

approaches. Our knowledge of the state at the initial
time k 5 0 is reflected by the mean state and its2x 0
covariance , which are used to initialize the EKF. The2P 0
EnKF is initialized by generating an ensemble of initial
condition fields , i 5 1, . . . , N, with mean andi2 2x x0 0
covariance . We start the assimilation cycle by cal-2P 0

culating a matrix of weights Kk (the Kalman gain) for
the update:

2 2 21T TK 5 P H [H P H 1 R ] .k k k k kk k (3)
If no observations are available at time k we formally
set Kk [ 0. Next, we update the state estimate (EKF)
or each ensemble member (EnKF) using a linear com-
bination of forecast model states and the observations:

1 2 2EKF: x 5 x 1 K [y 2 H x ],k kk k k k

1 2 2P 5 P 2 K H P ; (4a)k k k k k

i1 i2 i2 iEnKF: x 5 x 1 K [y 2 H x 1 v ],k kk k k k k

i 5 1, . . . , N. (4b)
Here, the superscripts 2 and 1 refer to the state esti-
mates, individual ensemble members, or covariances be-
fore and after the update, respectively. They are also
known as forecast and analysis, respectively. Note that
in the EnKF the data are perturbed by adding a random
realization of the measurement error (Burgers et al.ivk
1998).
In the forecast step, the EKF estimate is propagated

forward in time with the nonlinear model, and in the
EnKF each ensemble member is integrated using a cor-
responding ensemble of N random realizations of model
error fields :iwk

2 1EKF: x 5 f (x ); (5a)k11 k k

i2 i1 iEnKF: x 5 f (x ) 1 w , i 5 1, . . . , N. (5b)k11 k k k

We also propagate the state error covariance to account for
the evolution of the uncertainty in the state estimates:

2 1 TEKF: P 5 F P F 1 Q ,k11 k k k k

] fm[F ] 5 , m, n 5 1, . . . , N ; (6a)k mn x)]x 2n xk

1
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12 2 N2 2D 5 [x 2 x , . . . , x 2 x ],k11 k11 k11 k11 k11

N1
2 i2x 5 x . (6b)Ok11 k11N i51

The importance of error covariance propagation is ev-
ident from Eq. (3), which describes how the optimal
weights for the update depend on the error covariances.
In the EKF, is obtained by propagating the posterior2P k

state error covariance from the last update time with a
linearized matrix dynamic equation (6a). Integrating this
equation for large Nx is very computationally demand-
ing. This makes the application of the EKF to large-
scale environmental assimilation problems impossible
unless further approximations are made. In this study
we use the EKF implementation of Walker and Houser
(2001), in which all correlations between different
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-  “Effective” measurement depth depends on soil moisture 
-  Can reach several individual layers of a typical land surface model 

Therefore, direct assimilation of neutron 
intensity is more desirable!!! 



Land Surface Model (LSM) 

Modeled 
Soil 

Moisture 
Profile 

Requires an accurate model to 
interpret modeled soil moisture 
profiles in terms of the above-

ground fast neutron count 

GOAL 
to update LSM soil moisture 
profiles by assimilating the 

cosmic-ray fast neutron count 
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Monte Carlo Neutron 
Particle model (MCNPx) 

does that but it is too slow 
for use in data assimilation  

Can We Assimilate Neutron Counts? 



COSMIC is a simple analytic model which: 
§  captures the essential below-ground physics that MCNPX represents 
§  can be calibrated by optimization against MCNPX so that the nuclear 

collision physics is re-captured in parametric form    

Exponential reduction in the 
number of high energy 

neutrons with depth 

Isotropic creation of fast 
neutrons from high energy 

neutrons at level “z”  

z 

Exponential reduction in the number of the 
fast neutrons created at level “z” before 

their surface measurement 

high energy neutrons fast neutrons 

Ne	  

z	  
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COsmic-ray Soil Moisture Interaction Code (COSMIC) 



Exponential reduction in the 
number of high energy 

neutrons with depth 

Isotropic creation of fast 
neutrons from high energy 

neutrons at level “z”  

Exponential reduction in the number of the 
fast neutrons created at level “z” before 

their surface measurement 
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COSMIC is a simple analytic model which: 
§  captures the essential below-ground physics that MCNPX represents 
§  can be calibrated by optimization against MCNPX so that the nuclear 

collision physics is re-captured in parametric form    

COsmic-ray Soil Moisture Interaction Code (COSMIC) 
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MCNPX with TDT measurements

Using COSMIC to estimate COSMOS counts from 
measured soil moisture profiles (TDT sensors) 

The area-average soil 
moisture from the TDT 
sensors doesn’t sample 

the near-surface soil 
moisture (0-10 cm), so 

the COSMIC calculation 
based on  it doesn’t 

recognize the faster rate 
of drying of surface soil 

moisture 
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COSMIC Performance at Santa Rita (AZ) 
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COSMIC 

http://www.ral.ucar.edu/research/land/technology/lsm.php http://www.image.ucar.edu/DAReS/DART/ 

/home/jla/DART/tutorial/section1/tut_section1.fm 1 9/8/06

Data Assimilation Research Testbed Tutorial

Section 1: Filtering For a One Variable System

Version 2.0: September, 2006

COSMOS 

Data Assimilation Framework 
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NOAH-DART: Neutron Intensity Assimilation 
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NOAH Δz1 

NOAH Δz2 

NOAH Δz1 

NOAH Δz2 

NOAH-DART: Soil Moisture Profiles 
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R2 = 0.77, RMSE = 0.014 m3 m-3, BIAS = +0.120 m3 m-3 

R2 = 0.89, RMSE = 0.008 m3 m-3, BIAS = +0.010 m3 m-3 

R2 = 0.63 
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Concluding Remarks 
q COSMIC accurately simulates the equivalent number of 

neutrons given model-derived soil moisture profile 

q NOAH soil moisture (surface + root zone) improved 
after assimilating COSMOS neutron counts  

q Updated soil moisture rate of change could potentially 
be used to constrain parameters in NOAH (under 
investigation) 

E-mail: rosolem@email.arizona.edu 
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