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Observations 

…to produce an analysis 
(best possible estimate). 

What is Data Assimilation? 

+ 

Observations combined with a Model forecast… 
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Example: Estimating the Temperature Outside 

An observation has a value ( * ),  
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Example: Estimating the Temperature Outside 

An observation has a value ( * ),  

and an error distribution (red curve) that is associated with the 
instrument. 
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Example: Estimating the Temperature Outside 

Thermometer outside measures 1C.  

Instrument builder says thermometer is unbiased with +/- 0.8C gaussian 
error. 
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The red plot is               , probability of temperature given that To was 
observed. 

Example: Estimating the Temperature Outside 

Thermometer outside measures 1C.  

€ 

P T |To( )
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The green curve is               ; probability of temperature given all available 
prior information    . 

Example: Estimating the Temperature Outside 

We also have a prior estimate of temperature. 

€ 

P T |C( )

€ 

C
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Example: Estimating the Temperature Outside 

Prior information      can include: 
 

1.  Observations of things besides T; 

2.  Model forecast made using observations at earlier times; 

3.  A priori physical constraints  ( T > -273.15C ); 

4.  Climatological constraints  ( -30C < T < 40C ). 

€ 

C
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Combining the Prior Estimate and Observation 

€ 

P T |To,C( ) =
P To |T,C( )P T |C( )
Normalization

Bayes 
Theorem: 

Posterior: Probability 
of T given 

observations and 
Prior. Also called 

update or analysis. 

Prior 

Likelihood: Probability that To  is 
observed if T is true value and given 
prior information C. 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 



pg 14 Cornell University March 2012 

Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 

normalization 
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Consistent Color Scheme Throughout Tutorial 

Green = Prior 

Red = Observation 

Blue = Posterior 

Black = Truth   
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 
normalization 

Generally no analytic solution for Posterior. 
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Combining the Prior Estimate and Observation 

P T | T o , C ( ) = 
P T o | T , C ( ) P T | C ( ) 
normalization 

Gaussian Prior and Likelihood -> Gaussian Posterior 
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For Gaussian prior and likelihood… 

Prior   

Likelihood   

Then, Posterior 

 

With   

Combining the Prior Estimate and Observation 

€ 

P T |C( ) = Normal Tp,σ p( )

€ 

P To |T,C( ) = Normal To,σ o( )

€ 

P T |To,C( ) = Normal Tu,σ u( )

€ 

σ u = σ p
−2 +σ o

−2( )
−1

€ 

Tu =σ u
2 σ p

−2Tp +σ o
−2To[ ]
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What is Ensemble Data Assimilation? 

Use an ensemble (set) of model forecasts. 
 
Use sample statistics to get covariance between state and 
observations. 
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A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Fit a Gaussian to the sample. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Get the observation likelihood. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Compute the continuous posterior PDF. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 



pg 24 Cornell University March 2012 

Use a deterministic algorithm to ‘adjust’ the ensemble. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 



pg 25 Cornell University March 2012 

First, ‘shift’ the ensemble to have the exact mean of the posterior. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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First, ‘shift’ the ensemble to have the exact mean of the posterior. 
Second, linearly contract to have the exact variance of the posterior. 

  Sample statistics are identical to Kalman filter. 

A One-Dimensional Ensemble Kalman Filter:  
Assimilating an Observation 
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Multivariate Ensemble Kalman Filter 

So far, we have an observation likelihood for single variable. 
 

Suppose the model prior has additional variables. 
 

Use linear regression to update additional variables. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
What should happen to the 
unobserved variable? 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Compute increments for prior 
ensemble members of observed 
variable. 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
One variable is observed. 
Using only increments 
guarantees that if observation 
had no impact on observed 
variable, unobserved variable is 
unchanged (highly desirable). 
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Ensemble filters: Updating additional prior state 
variables 

Assume that all we know is prior 
joint distribution. 
How should the unobserved 
variable be impacted? 
First choice: least squares. 
Equivalent to linear regression. 
Same as assuming binormal 
prior. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
How should the unobserved 
variable be impacted? 
First choice: least squares. 
Begin by finding least squares 
fit. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 



pg 36 Cornell University March 2012 

Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Next, regress the observed 
variable increments onto 
increments for the unobserved 
variable. 
Equivalent to first finding image 
of increment in joint space. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Have joint prior distribution of 
two variables. 
Regression: Equivalent to first 
finding image of increment in 
joint space. 
Then projecting from joint space 
onto unobserved priors. 
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Ensemble filters: Updating additional prior state 
variables 

Now have an updated 
(posterior) ensemble for the 
unobserved variable. 

Cornell University March 2012 
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Ensemble filters: Updating additional prior state 
variables 

Now have an updated 
(posterior) ensemble for the 
unobserved variable. 
Fitting Gaussians shows that 
mean and variance have 
changed. 

Cornell University March 2012 
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Ensemble filters: Updating additional prior state 
variables 

Now have an updated 
(posterior) ensemble for the 
unobserved variable. 
Fitting Gaussians shows that 
mean and variance have 
changed. 
Other features of the prior 
distribution may also have 
changed. 

Cornell University March 2012 
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Ensemble Filter for Large Geophysical Models 

Cornell University March 2012 

1. Use model to advance ensemble (3 members here) 
to time at which next observation becomes available. 

Ensemble state 
estimate after using 
previous observation 
(analysis) 

Ensemble state 
at time of next 
observation 
(prior) 
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2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member. 

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially. 

Ensemble Filter for Large Geophysical Models 

Cornell University March 2012 
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3. Get observed value and observational 
error distribution from observing system. 

Ensemble Filter for Large Geophysical Models 

Cornell University March 2012 
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4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors). 

Note: Difference between 
various ensemble filters is 
primarily in observation 
increment calculation. 

Ensemble Filter for Large Geophysical Models 

Cornell University March 2012 
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5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments. 

Theory: impact of 
observation increments on 
each state variable can be 
handled independently! 

Ensemble Filter for Large Geophysical Models 
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6. When all ensemble members for each state variable 
are updated, there is a new analysis. Integrate to time 
of next observation … 

Ensemble Filter for Large Geophysical Models 

Cornell University March 2012 
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Ensemble Filter for Large Geophysical Models 

Cornell University March 2012 

A generic ensemble filter system like DART just needs: 
 1. A way to make model forecasts; 
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A generic ensemble filter system like DART just needs: 
 1. A way to make model forecasts; 
 2. A way to compute forward operators, h. 

Ensemble Filter for Large Geophysical Models 

Cornell University March 2012 
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DART is used at:  

Public domain software for 
ensemble Data Assimilation 

–  Well-tested, portable, 
extensible, free! 

Models 
–  Toy to HUGE 

Observations 
–  Real, synthetic, novel 

An extensive Tutorial 
–  With examples, exercises, 

explanations 

People: The DAReS Team 

43 UCAR member universities 
More than 100 other sites 

Cornell University March 2012 
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DART is:  

Education 

Exploration 

Research 

Operations 

Cornell University March 2012 
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DART works with many geophysical models 

Global Atmosphere models:  
 
CAM   Community Atmosphere Model  NCAR 
CAM/CHEM  CAM with Chemistry   NCAR   
WACCM  Whole Atmosphere Community  NCAR 

  Climate Model  
AM2   Atmosphere Model 2   NOAA/GFDL 
NOGAPS  Navy Operational Global   US Navy 

  Atmospheric Prediction System 
ECHAM  European Centre Hamburg Model  Hamburg 
Planet WRF  Global version of WRF   JPL  
MPAS   Model for Prediction Across  NCAR/DOE 

  Scales (under development) 

Cornell University March 2012 



pg 57 

DART works with many geophysical models 

Regional Atmosphere models:  
  

WRF/ARW  Weather Research and   NCAR 
  Forecast Model    

WRF/CHEM  WRF with Chemistry   NCAR    
NCOMMAS  Collaborative Model for   NOAA/NSSL 

  Multiscale Atmospheric Simulation  
COAMPS  Coupled Ocean/Atmosphere  US Navy 

  Mesoscale Prediction System 
CMAQ   Community Multi-scale Air Quality  EPA 
COSMO  Consortium for Small-Scale  DWD 

  Modeling 
 

Cornell University March 2012 
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DART works with many geophysical models 

Ocean models:  
  

POP   Parallel Ocean Program   DOE/NCAR 
MIT OGCM  Ocean General Circulation  MIT 

  Model 
ROMS   Regional Ocean Modeling   Rutgers 

  System (under development) 
MPAS   Model for Prediction Across  DOE/LANL 

  Scales (Under development)   

Cornell University March 2012 
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DART works with many geophysical models 

Upper Atmosphere/Space Weather models:  
  

ROSE       NCAR 
TieGCM  Thermosphere Ionosphere  NCAR/HAO  

  Electrodynamic GCM 
GITM   Global Ionosphere  

  Thermosphere Model   Michigan
  

Cornell University March 2012 
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DART works with many geophysical models 

Land Surface models:  
  

CLM   Community Land Model   NCAR   

Cornell University March 2012 
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Basic Capability: Ensemble Analyses and Forecasts 
Works for all CAM versions since 2002   

20 of 80 
members 

6-hour forecast    
500 hPa height    
18Z 14 Jan 2007 

Focus on DART Science with CAM 

Cornell University March 2012 
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Ensemble Analyses and Forecasts 
 

Sample collaborations: 
 
Edmund Chang, Stony Brook 
Pacific storm track/cyclogenesis 
 
Nedjeljka Zagar, Ljubljana University 
Normal mode analysis of general circulation 
 
Maria Tsukernik, Monash/Brown 
Antarctic cyclones 

Cornell University March 2012 
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Ensemble Analyses and Forecasts 
 

Sample collaborations: 
 
Rahul Mahajan, U. Washington 
Real-time ensemble forecasts 
For Pacific Northwest. 
 
Ibrahim Hoteit, KAUST Saudi Arabia 
Gulf of Mexico Ocean Prediction. 
 
Ryan Torn, SUNY Albany 
Real-time Atlantic hurricane forecasts. 

Cornell University March 2012 
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Diagnosing and Correcting Errors in the 
CAM Finite Volume core with DART 

Kevin Raeder* 
Jeff Anderson* 

Peter Lauritzen+ 
Tim Hoar* 

*NCAR/CISL/IMAGe/DAReS 
+NCAR/ESSL/CGD/AMPS 

Cornell University March 2012 
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Gridpoint noise detected in CAM/DART analysis 

CAM FV core - 80 member mean - 00Z 25 September 2006 

Cornell University March 2012 
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Suspicions turned to the polar filter (DPF) 

CAM FV core - 80 member mean - 00Z 25 September 2006 

Cornell University March 2012 
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Continuous polar filter (alt-pft) eliminated noise.  

Cornell University March 2012 
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Differences mostly in transition region of default filter. 

Cornell University March 2012 
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The use of DART diagnosed a problem that had been 
unrecognized (or at least undocumented). 

Could have an important effect on any physics in which 
meridional mixing is important. 

The problem can be seen in ‘free runs’ - it is not a data 
assimilation artifact. 

Without assimilation, can’t get reproducing occurrences 
to diagnose. 

 

Diagnosing and Correcting Errors in the CAM 
Finite Volume core with DART 

Cornell University March 2012 
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Cloud response to the 2007 Arctic sea ice loss 
in CAM3.5 and CAM4  

Jennifer E. Kay 
National Center for Atmospheric Research (NCAR) 

Colorado State University (CSU) 
Collaborators: Julienne Stroeve (NSIDC),  

Andrew Gettelman, Kevin Raeder, Jeff Anderson (NCAR),  
Graeme Stephens, Tristan L’Ecuyer, Chris O’Dell (CSU) 
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CAM4’s cloud response to sea ice loss; July 2006 to 2007 

Observed	
  ice	
  frac-on	
  loss	
  

Figure 8. 2007 minus 2006 July total cloud differences: A. CAM4 forecasts (Jul07-Jul06, see Table 

1), B. CAM4 forecasts with CLDST_MIXBL (Jul07_cldst_mixbl-Jul06_cldst_mixbl), C. MODIS 

observations (Platnick et al., 2003).

24-­‐hour	
  forecasts	
  started	
  from	
  DART/CAM	
  
analyses	
  iden<fied	
  erroneous	
  cloud	
  response	
  
to	
  	
  disappearing	
  sea	
  ice.	
  
Jen	
  Kay	
  found	
  that	
  low	
  clouds	
  were	
  only	
  
diagnosed	
  over	
  open	
  water,	
  not	
  ice,	
  and	
  
the	
  low	
  cloud	
  scheme	
  should	
  have	
  required	
  
a	
  well	
  mixed	
  boundary	
  layer.	
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Exploring the Impact of Novel Observations: 
Impact of COSMIC GPS Observations in Cam Analyses 

Cornell University March 2012 
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Impact of COSMIC GPS Observations in Cam Analyses 

GPS ACARS and Aircraft 

Radiosondes Sat Winds 

Observations 1 December 2006 

Cornell University March 2012 
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CAM 6-hour forecast Bias from 
Radiosonde Specific Humidity (Q) 

December 2006 
hP

a SH TR NA 

Cornell University March 2012 
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Ø GPS has significant information, especially about moisture;  

Ø Most important where other observations are sparse; 

Ø Ensemble assimilation can do full multivariate improvement; 

Ø Must carefully consider planning of future obs systems. 

Ø CAM biases can be reduced with GPS observations. 

Conclusions 

Cornell University March 2012 
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Estimating CO with 
MOPITT remote sensing 

observations in CAM/Chem 
Ave Arellano, ACD 
(now U. Arizona) 

Ave extended DART/CAM 
for CAM/Chem. 
 

Cornell University March 2012 
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Then he added MOPITT 
observations. Improved  
fit to aircraft CO obs. 
 

Estimating CO with 
MOPITT remote sensing 

observations in CAM/Chem 
Ave Arellano, ACD 
(now U. Arizona) 

Cornell University March 2012 
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This system was used for 
real-time support for  
ARCTAS field campaign. 
 

Estimating CO with 
MOPITT remote sensing 

observations in CAM/Chem 
Ave Arellano, ACD 
(now U. Arizona) 

Cornell University March 2012 
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Moving towards coupled assimilation for earth system 
models. 

Tim Hoar, Nancy Collins, Kevin Raeder, Jeffrey Anderson, 
NCAR Institute for Math Applied to Geophysics 

Data Assimilation Research Section 

Steve Yeager,  Mariana Vertenstein, Gokhan 
Danabasoglu, Alicia Karspeck, and Joe Tribbia 

NCAR/NESL/CGD/Oceanography 
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Ocean Data Assimilation Motivation 

•  Climate change over time scales of 1 to several decades has 
been identified as very important for mitigation and infrastructure 
planning. 

•  CGD needs ocean initial conditions for the IPCC decadal 
prediction program. 

Cornell University March 2012 
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Hypothesis: Need Ensemble of Atmospheres to Force 
Ensemble Assimilation for Ocean 

500 hPa GPH 
Feb 17 2003 

•  Case 1: 23 POP members forced 
by a single atmosphere. 

•  Case 2: 48 POP members forced 
by 48 CAM/DART analyses. 

•  Generates additional ocean 
spread, improved analyses. 

Cornell University March 2012 
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Obs DART 

POP Coupler 

2D forcing 
3D restart 

3D state 
2D forcing 
from CAM  
assimilation 

DATM 

Current 
POP 
Assimilation 

Cornell University March 2012 
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FLOAT_SALINITY      68200                
FLOAT_TEMPERATURE   395032              
DRIFTER_TEMPERATURE   33963                
MOORING_SALINITY     27476               
MOORING_TEMPERATURE    623967                 
BOTTLE_SALINITY     79855              
BOTTLE_TEMPERATURE     81488                      
CTD_SALINITY     328812                    
CTD_TEMPERATURE    368715                      
STD_SALINITY        674                   
STD_TEMPERATURE       677                    
XCTD_SALINITY       3328                  
XCTD_TEMPERATURE      5790                  
MBT_TEMPERATURE     58206                   
XBT_TEMPERATURE   1093330                 
APB_TEMPERATURE    580111 

 
 

World Ocean Database T,S observation counts 
These counts are for 1998 & 1999 and are representative. 

•  temperature observation error standard deviation == 0.5 K. 
•  salinity observation error standard deviation  == 0.5 msu. 

Cornell University March 2012 
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Ensemble Spread for Pacific 100m XBT 
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Coupler 

CAM 

DART 
Obs 

POP 

CLM 

CICE 

Fully coupled 
assimilation will 
need data from 
all models at the 
same time 

Cornell University March 2012 
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(David Dowell, NOAA) ! ! !March 28 Tornado 
Outbreak �

! ! !May 4 (Greensburg, KS) Tornado Case�

Cornell University March 2012 
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Hurricane Katrina Sensitivity Analysis 
(Ryan Torn, SUNY Albany) 

Contours are ensemble mean 
48h forecast of deep-layer 
mean wind. 

Color indicates change in 
the longitude of Katrina. 

Cornell University March 2012 
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DART Includes Many Diagnostic Tools 
Observation Visualization Example 



pg 91 Cornell University March 2012 

DART Includes Many Algorithms to Improve Performance 

Ø Adaptive inflation to maintain spread 
Ø Adaptive localization to reduce computation 
Ø Group filter to design localization 
Ø Sampling error correction to reduce errors 

Ø General parallel implementation 
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http://www.image.ucar.edu/DAReS/DART/ 

Code to implement all of the algorithms 
discussed is freely available from: 


