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What is Data Assimilation?

Observations combined with a Model forecast...

...to produce an analysis
(best possible estimate).
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Example: Estimating the Temperature Outside

An observation has a value ( *),
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Example: Estimating the Temperature Outside

An observation has a value ( *),
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and an error distribution (red curve) that is associated with the
instrument.
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Example: Estimating the Temperature Outside

Thermometer outside measures 1C.
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Instrument builder says thermometer is unbiased with +/- 0.8C gaussian
error.
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Example: Estimating the Temperature Outside

Thermometer outside measures 1C.
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The red plotis P(T I T,), probability of temperature given that T, was
observed.
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Example: Estimating the Temperature Outside

We also have a prior estimate of temperature.

Probability

94 -2 0 2 4
Temperature

The green curve is P(T | C); probability of temperature given all available
prior information C.
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Example: Estimating the Temperature Outside

Prior information C can include:

1. Observations of things besides T;

2. Model forecast made using observations at earlier times;
3. A priori physical constraints (T > -273.15C );

4. Climatological constraints (-30C < T <40C).
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Combining the Prior Estimate and Observation

Bayes

Theorem: P(T | TO,C) _

/

Posterior: Probability
of T given
observations and
Prior. Also called
update or analysis.

R(T,1T.C)P(TICY

Normalization

Likelihood: Probability that T, is
observed if T is true value and given
prior information C.
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Combining the Prior Estimate and Observation

P(T,\T,C)P(T|C)

normalization

P(TIT,,C)=

O
~

Prior PDF

Probability
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Temperature
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Combining the Prior Estimate and Observation

P(T,\T,C)P(T1C)

normalization

P(TIT,,C)=

Obs. Likelihood

Probability
O o
ST

Temperature
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Combining the Prior Estimate and Observation

CP(T,IT,C)P(TIC)

P(TIT,,C)=

normalization
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Combining the Prior Estimate and Observation

P(T,\T,C)P(T1C)

P(TT,,C)= o
normalization
Area Under Prodtjct IS Denorr{inator
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Combining the Prior Estimate and Observation

P(T,\T,C)P(T1C)

P(TIT,,C)= o
normalization
Posterior PDF
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Combining the Prior Estimate and Observation

P(LIT.OPTIC)
normalization

P(TT,C)=

Generally no analytic solution for Posterior.

Pésterior PDI5

Probability
© ©O
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Combining the Prior Estimate and Observation

P(LIT.OPTIC)
normalization

P(TT,C)=

Gaussian Prior and Likelihood -> Gaussian Posterior

Pésterior PDI5

Probability
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Combining the Prior Estimate and Observation

For Gaussian prior and likelihood...

Prior P(TI1C)= Normal(Tp,Gp)
Likelihood P(T,|T,C)=Normal(T,.0,)
Then, Posterior P(T1T,,C)=Normal(T,,0,)
1
o, =+/(0, +0’)
With




The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L

A. If temperature attime t; = T, then
temperature att, =t, + At is T, =L(T,)

B. Example: T, =T, + AtT,
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The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L.

A. If temperature attime t; = T, then
temperature att, =t, + At is T, =L(T,).

B. Example: T, =T, + AtT, .

2. If posterior estimate at time t, is Normal(T,, ,, 6, 1) then
prior at t, is Normal(T , ,, o, ,).

Tp2= Tyt AT,

Op o = (At + 1) Oy 1

u,1»
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The One-Dimensional Kalman Filter

1. Suppose we have a linear forecast model L.

A. If temperature attime t; = T, then
temperature att, =t, + At is T, =L(T,).

B. Example: T, =T, + AtT, .

2. If posterior estimate at time t, is Normal(T,, ,, 6, 1) then
prior at t, is Normal(T , ,, o, ,).

3. Given an observation at t, with distribution Normal(t,, c,)
the likelihood is also Normal(t,, o).
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The One-Dimensional Kalman Filter

Suppose we have a linear forecast model L.

A. If temperature attime t; = T, then
temperature att, =t, + At is T, =L(T,).

B. Example: T, =T, + AtT, .

If posterior estimate at time t, is Normal(T , 4, 6, ;) then
prior at t, is Normal(T , ,, o, ,).

Given an observation at t, with distribution Normal(t,, c,)
the likelihood is also Normal(t,, o).

The posterior at t, is Normal(T, ,, 6,,) where T,, and G,
come from page 17.
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A One-Dimensional Ensemble Kalman Filter

Represent a prior pdf by a sample (ensemble) of N values:
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A One-Dimensional Ensemble Kalman Filter

Represent a prior pdf by a sample (ensemble) of N values:

g 0.4 Sample Mean

0

& | Prior PDF _Sample

L‘t’ 0.2 ~ Standard Deviation
. ok P ek
-4 -2 0 2 4

Temperature

N
Use sample mean 1 = 2T, /N .
n=1 —\ 2
and sample standard deviation O :\/E(T -T) /(N—l)
n=1 —
to determine a corresponding continuous distribution Normal(T,GT)
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A One-Dimensional Ensemble Kalman Filter:
Model Advance

If posterior ensemble at time t,is T1,, n=1, ..., N
w 0.3}
Q 0.2} t1 Posterior
— 0.1f Ensemble
' H—H—K :
-6 -4 -2 # 2
Temperature
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A One-Dimensional Ensemble Kalman Filter:
Model Advance

If posterior ensemble at time t,is T1,, n=1, ..., N,
advance each member to time t, with model, T2n =L(Tyn) n=1,...,N.

5 0.3
Q. 0.2} t2 Prior
& 0.1f Ensemble
%It: % %I% %lelé
w 0.3}
0 0.2} t1 Postenor |
~ 0.1} Ensemble
-6 -4 —2 * # 2
Temperature
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A One-Dimensional Ensemble Kalman Filter:
Model Advance

Same as advancing continuous pdf at time t, ...
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A One-Dimensional Ensemble Kalman Filter:
Model Advance

Same as advancing continuous pdf at time t,
to time t, with model L.

5 0.3 -
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

\J LJ LJ

:0?04 .............. e e e e en et et et es et b erereseresereserererereres
5 Prior PDF

© ; -

S

y 0.2

Pﬁor Ensembie
* ok ok

-4 -2 0 2 4
Temperature

Fit a Gaussian to the sample.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation
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Obs. Likelihood
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Get the observation likelihood.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

Posterior PDF

Obs. Likelihood
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Temperature

Compute the continuous posterior PDF.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

Posterior PDF :
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Use a deterministic algorithm to ‘adjust’ the ensemble.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

Posterior PDF

Probability
o O
\S) N

Mean Shifted % /% %
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Temperature

First, ‘shift’ the ensemble to have the exact mean of the posterior.
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A One-Dimensional Ensemble Kalman Filter:
Assimilating an Observation

Posterior PDF

O
»

Variance Adjusted ¥ % %
Mean Shifted % /% %

Probability
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Temperature

First, ‘shift’ the ensemble to have the exact mean of the posterior.
Second, linearly contract to have the exact variance of the posterior.
Sample statistics are identical to Kalman filter.
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Initial Comments on (Ensemble) Kalman Filter

» KF optimal for linear model, gaussian likelihood.
» In KF, only mean and variance have meaning.
» The deterministic Ensemble KF gives identical mean, variance.

» The original Ensemble KF uses a Monte Carlo algorithm for the
observation impact; has sampling error.

» Ensemble allows computation of many other statistics.
» What do they mean? Not entirely clear.

» Example: Kurtosis. Completely constrained by initial ensemble.
It is problem specific whether this is even defined!

IMA 11 March 2013




Multivariate Kalman Filter

Product of d-dimensional normals is normal

N(‘ul’zl)N(:uz’zz) =cN(1.Z)

Covariance: ==(X'+X;' )_1

Mean: =3y + 25w, )

Weight: ¢=[ (2)" |2, + =,/ | exp{-1/2[ (1, 1, (2, +Z.) " (1, - 1) ]}

Weight normalizes away.
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Multivariate Ensemble Kalman Filter

» So far, we have an observation likelihood for single variable.
» Suppose the model prior has additional variables.

» KF equivalent to linear regression to update additional variables.

» Need ensemble size > d to represent d-dimensional normal.
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Ensembile filters: Updating additional prior state variables

Assume that all we know is prior

] 5 . . . . .
I joint distribution.
- 3 * . .
§ 45 One variable is observed.
2 ¥ What should happen to the
h 4 unobserved variable?
O e *
)
e
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> 3* *
% % % % %
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Ensembile filters: Updating additional prior state variables

Assume that all we know is prior

%5 4.% Y% * joint distribution.
* " [
533 . One variable is observed.
X Compute increments for prior
ensemble members of observed

variable.
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Ensembile filters: Updating additional prior state variables

Assume that all we know is prior

2 4.% . * joint distribution.
533 =L One variable is observed.
— Using only increments
guarantees that if observation
o had no impact on observed
* * variable, unobserved variable is
Increments unchanged (highly desirable).
it
-2 0 2 4

Observed Variable
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Ensembile filters: Updating additional prior state variables

Assume that all we know is prior
joint distribution.

¥ * How should the unobserved
variable be impacted?

First choice: least squares.

O

Unobserved State Variable
N

i * Equivalent to linear regression.
3.5 Same as assuming binormal
prior.
39* * :
Increments ¥
-2 0 2 4

Observed Variable
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Ensemble filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

pe * How should the unobserved

O

L)
Q0
[
S 4.5 . .
> variable be impacted?
g * - .
& a4 First choice: least squares.
§ i * Begin by finding least squares
235 fit.
o
c
— 3*’ *
Igcrements *‘:‘* ok |
¥
-2 0 2 4

Observed Variable
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

Next, regress the observed
variable increments onto
increments for the unobserved
variable.

Equivalent to first finding image

O

>

)
¥
*

¥
Sk

¥*
*

Unobserved State Variable
N

> of increment in joint space.
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

Next, regress the observed
variable increments onto
increments for the unobserved
variable.

Equivalent to first finding image
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

Next, regress the observed
/ variable increments onto

increments for the unobserved

variable.

Equivalent to first finding image

of increment in joint space.
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

o Next, regress the observed
/ variable increments onto
increments for the unobserved
variable.
Equivalent to first finding image
of increment in joint space.

O

>
)
¥
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Unobserved State Variable
N

3.5
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Increments
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

¥ Next, regress the observed
/ variable increments onto
increments for the unobserved
variable.
Equivalent to first finding image
of increment in joint space.

O

>
)
¥

¥
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Unobserved State Variable
N

3.5
3*
Increments
*—*‘
-2 0 2 4

Observed Variable
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of

onto unobserved priors.

w0
3))

o > two variables.

Sas " ol Regression: Equivalent to first
= | . finding image of increment in

g . * joint space.

§ * Then projecting from joint space
2
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

* Regression: Equivalent to first
l . / finding image of increment in
joint space.
* Then projecting from joint space
/ onto unobserved priors.
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

" ol Regression: Equivalent to first
J . // finding image of increment in
joint space.
* Then projecting from joint space
/ onto unobserved priors.
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

* o Regression: Equivalent to first
J . // finding image of increment in
joint space.
* Then projecting from joint space
/ onto unobserved priors.
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Ensembile filters: Updating additional prior state variables

Have joint prior distribution of
two variables.

N ol Regression: Equivalent to first
J | // finding image of increment in
joint space.
* Then projecting from joint space
/ onto unobserved priors.

O

>
)

Unobserved State Variable
w
(4} H

w

Increments
PR
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Observed Variable
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Comments on multidimensional (Ensemble) Kalman Filter

» KF optimal for linear model, gaussian likelihood.

» The deterministic Ensemble KF gives identical mean, covariance
with sufficiently large ensemble size.

» Basic ensemble filter fails for ensemble too small.

» For nonlinear model, non-gaussian likelihood, all bets are off.

» Both deterministic and stochastic Ensemble KFs become Monte
Carlo algorithms.

~
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Ensemble Filter for Large Geophysical Models

1. Use model to advance ensemble (3 members here) to time at which next
observation becomes available.

Ensemble state estimate after

using previous observation Ensemble state at ime

(analysis) of next observation
> (prior)
tk/
.;: —> tk+1
K — /
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Ensemble Filter for Large Geophysical Models

2. Get prior ensemble sample of observation, y = h(x), by applying forward
operator h to each ensemble member.

h Theory: observations from
h h instruments with uncorrelated
errors can be done sequentially.

tk+1

— P 4
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Ensemble Filter for Large Geophysical Models

3. Get observed value and observational error distribution from observing
system.

— /
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Ensemble Filter for Large Geophysical Models

4. Find the increments for the prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

Note: Difference between various
tk ensemble filters is primarily in

observation increment calculation.

— P 4

INATIONAL CENTER FOR ATMOSPHERIC RESEARCH
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Ensemble Filter for Large Geophysical Models

5. Use ensemble samples of y and each state variable to linearly regress
observation increments onto state variable increments.

tk \ heory: impact of observation
- :

* increments on each state

* . 4 .

%o - variable can be handled

independently!
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Ensemble Filter for Large Geophysical Models

6. When all ensemble members for each state variable are updated, there is a
new analysis. Integrate to time of next observation ...

tk+2
tk A} >
* s —
*
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

—-10F time 91 ] ] ] ] ]
5 10 15 20 25 30 35 40
State Variable
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

-10f time 92 . . . . .
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State Variable
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

-10f time 93 . . . . .
5 10 15 20 25 30 35 40
State Variable
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

-10f time 94 . . . . .
5 10 15 20 25 30 35 40
State Variable
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

-10f time 95 . . . . .
5 10 15 20 25 30 35 40
State Variable
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

-10f time 96 . . . . .
5 10 15 20 25 30 35 40
State Variable
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

-10f time 97 . . . . .
5 10 15 20 25 30 35 40
State Variable
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

-10f time 98 . . . . .
5 10 15 20 25 30 35 40
State Variable
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

-10f time 99 . . . . .
5 10 15 20 25 30 35 40
State Variable
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Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like synoptic weather around a latitude band.

—-10F time 100 ] ] ] ] ]
5 10 15 20 25 30 35 40
State Variable
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..

-10¢} time 102 ] truth = ensemble 1

5 10 15 20 25 30 35 40
State Variable
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..

-10f time 104 ] truth =~ ensemble 1
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State Variable
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..

-10¢} time 106 ] truth = ensemble 1

5 10 15 20 25 30 35 40
State Variable
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..

-10 time 108 ] truth = ensemble 1

5 10 15 20 25 30 35 40
State Variable
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is slightly perturbed for each of the 40-variables at time 100.
Refer to unperturbed control integration as ‘truth’..
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Assimilate ‘observations’ from 40 random locations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 16) to each.
Start from ‘climatological’ 20-member ensemble.
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Assimilate ‘observations’ from 40 random locations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 16) to each.
Start from ‘climatological’ 20-member ensemble.

-10 time 203 ) truth =~ ensemble obs
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Assimilate ‘observations’ from 40 random locations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 16) to each.
Start from ‘climatological’ 20-member ensemble.

-10 time 205 ) truth =~ ensemble obs
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Assimilate ‘observations’ from 40 random locations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 16) to each.
Start from ‘climatological’ 20-member ensemble.

time 207 truth  ensemble obs
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Assimilate ‘observations’ from 40 random locations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 16) to each.
Start from ‘climatological’ 20-member ensemble.

-10 time 209 ) truth =~ ensemble obs
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Assimilate ‘observations’ from 40 random locations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 16) to each.
Start from ‘climatological’ 20-member ensemble.
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Assimilate ‘observations’ from 40 random locations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 16) to each.
Start from ‘climatological’ 20-member ensemble.

time 213 truth ~ ensemble obs
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Assimilate ‘observations’ from 40 random locations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 16) to each.
Start from ‘climatological’ 20-member ensemble.
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Assimilate ‘observations’ from 40 random locations each step.

Observations generated by interpolating truth to station location.
Simulate observational error: Add random draw from N(O, 16) to each.
Start from ‘climatological’ 20-member ensemble.

—10F time 217 ) truth ~ ensemble obs
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Assimilate ‘observations’ from 40 random locations each step.

This isn’t working very well.
Ensemble spread is reduced, but...,
Ensemble is inconsistent with truth most places.
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Some Error Sources in Ensemble Filters

3. Observation error

s 4. Sampling Error;
2. Obs. operator error; L’ L emm—- 'PIING :
Representativeness g - Gaussian Assumption
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Observations impact unrelated state variables
through sampling error.

Plot shows expected absolute value of
sample correlation vs. true correlation.

03 m — . .......1 Unrelated obs. reduce spread, increase
' ' : : error.

Expected ISample Correlationl

0.2b ™ 4 S N Attack with localization.
: — 10 Members
0.1k Mo — 20 Members {f  paqyce impact of observation on weakly
— — 40 Members -
80 Members correlated state variables.

0 01 02 03 04

True Correlation Let weight go to zero for many ‘unrelated

variables to save on computing.
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Lorenz-96 Assimilation with localization of observation impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of observation impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of observation impact.
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Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of observation impact.
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Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of observation impact.

INATIONAL CENTER FOR ATMOSPHERIC RESE,
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Localization from Hierarchical Filter

-10} time 209 ) truth _ ensemble obs
5 10 15 20 25 30 35 40

No Localization

-10F time 209 ] truth . ensemble o0bs

5 10 15 20 25 30 35 40
State Variable

IMA 11 March 2013




Lorenz-96 Assimilation with localization of observation impact.

INATIONAL CENTER FOR ATMOSPHERIC RESE,
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Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of observation impact.
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Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of observation impact.

INATIONAL CENTER FOR ATMOSPHERIC RESE,

ARCH

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of observation impact.

Localization from Hierarchical Filter
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Lorenz-96 Assimilation with localization of observation impact.

Localization from Hierarchical Filter
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Localization computed by empirical offline computation.

Localization from Hierarchical Filter
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Localization in dry dynamical core
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Localization for V ob. on U state variables.
Has statistically significant quadrupole structure in horizontal.

Localization can have lots of structure in realistic models.
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Some Error Sources in Ensemble Filters

3. Observation error

s 4. Sampling Error;
2. Obs. operator error; L’ L emm—- 'PIING :
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.

10 ;

O
model time (pseudo—days)
eqsel Time evolution for first state variable shown.
XIS Assimilating model quickly diverges from ‘true’ model.
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.

-10 time 306 ] truth  ensemble 0bs

5 10 15 20 25 30 35 40
State Variable

IMA 11 March 2013

INATIONAL CENTER FOR ATMOSPHERIC RESEARCH



Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.
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Assimilating in the presence of simulated model error.

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.

-10F time 346 ] truth ~ ensemble obs
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State Variable

This isn’t working again!
It will just keep getting worse.
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How to deal with model error in assimilation?

» Just fix the model! (May not be such an easy thing to do)
» Model the model error and include this in prior:
* If we knew the error accurately could just fix the model.

* Modeling or parameterizing model uncertainty in prior
can help.

* This looks like a job for stochastic modeling.

IMA 11 March 2013




Assimilation fix for model error.

» Use prior variance inflation.

» Simply increase prior ensemble variance of each state
variable before computing observation increments.

» Adaptive algorithms use observations to guide this.

0.8 ! !
Prior PDF Inflate SD by 1 5 Obs

~
’ N

0.6 A A """ Va‘r|ance"by“1‘“5 """"" '
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

1.6 Y
14 inflation
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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Assimilating with Inflation in presence of model error.

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.

It can work, even in presence of severe model error.
1.6

1.4%/\/\/\_\/\/\’\/‘.
1.2. n n n n n ]

5 10 15 20 25 30 35 40
Adaptive State Space Inflation

5 10 15 20 25 30 35 40
No Inflation

5 10 15 20 25 30 35 40
State Variable

= NCAR @ IMA 11 March 2013




Atmospheric Ensemble Reanalysis, 1998-2010

Assimilation uses 80
members of 2° FV CAM
forced by a single ocean
JI1 L AN\ (Hadley+ NCEP-0OI2) and
120w // =4 b W \\ \\ T produces a very

O(1 million)
atmospheric obs are
assimilated every
day.

500 hPa GPH
Feb 17 2003

60W

CONTOUR FROM 5200 TO 5700 BY 100
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266 hPa U wind inflation
Inflation is large where model bias is detected.
Mostly where there are dense observations.

- - -New South Wales

inflation factor

300

- 0 ,.9 100 150 200 250
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Some Error Sources in Ensemble Filters

3. Observation error

s 4. Sampling Error;
2. Obs. operator error; L’ L emm—- 'PIING :
Representativeness Mg . Gaussian Assumption
i i
I
I _/\ —
I‘ -+ } |
\
% 5. Sampling Error;
~ . .
> h Assuming Linear
Statistical Relation
tk
%
*
Fo—
A
/
/
1. Model error
B NCAR
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Current Ocean (POP)

Assimilation
]

2D forcing
‘1’ 1‘ from CAM

assimilation
<€
POP Coupler
-lé .9
3D restart'~
2D forcing
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World Ocean Database T,S observation counts

These counts are for 1998 & 1999 and are representative.

FLOAT_SALINITY 68200
FLOAT_TEMPERATURE 395032
DRIFTER_TEMPERATURE 33963
MOORING_SALINITY 27476
MOORING_TEMPERATURE 623967
BOTTLE_SALINITY 79855
BOTTLE_TEMPERATURE 81488
CTD_SALINITY 328812
CTD_TEMPERATURE 368715
STD_SALINITY 674
STD_TEMPERATURE 677
XCTD_SALINITY 3328
XCTD_TEMPERATURE 5790
MBT_TEMPERATURE 58206
XBT_TEMPERATURE 1093330
APB_TEMPERATURE 580111

« temperature observation error standard deviation == 0.5 K.

* salinity observation error standard deviation == 0.5 msu.

h NCAR ,@; IMA 11 March 2013
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Physical Space: 1998/1999 SST Anomaly from HadOI-SST

Ol_hind RMSE = 1.31C

°C

Coupled Free Run
POP forced by observed
atmosphere (hindcast)

75°W B60°W 45°W 30°W 15°W
DARTPOP_48 RMSE = 0.908°C 0.5

Ensemble Assimilation
48 POP oceans
Forced by 48 CAM reanalyses

75°W 60°W 45°W 30°W 15°W
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Challenges where ocean model is unable,
or unwilling, to simulate reality.

Example: cross section along Kuroshio; model separates too far north.

Hurrell SST

7o &

Regarded to
be accurate.

Free run of POP,
s the warm water
is too far North.

120°E 132°E 144°E 156°E 168°E 180°W
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Challenges in correcting position of Kuroshio.

60-day a55|m|Iat|on startlng from model cllmatology on 1 January 2004.

TEMF on 22-Jan-2004
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Many observations are
rejected (red), but others
(blue) move temperature
gradient south.
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Adaptive inflation increases
ensemble spread as
assimilation struggles to
push model towards obs.




Challenges in correcting position of Kuroshio.

60-day assimilation starting from model climatology on 1 January 2004.

Green dashed line is posterior at previous time,
Blue dashed line is prior at current time,
Ensembles are thin lines.

Model forecasts finally fail due

Observations keep pulling the warm water to the south; to numerical issues. Black
Model forecasts continue to quickly move warm water dashes show original model
further north. Inflation continues to increase spread. state from 10 January.
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Challenges in correcting position of Kuroshio.

60-day assimilation starting from model climatology on 1 January 2004.

* Assimilation cannot force model to fit observations.

* Model cannot ‘represent’ the observations.

* Use of adaptive inflation leads to eventual model failure.

* Reduced adaptive inflation can lead to compromise between observations
and model.

* Increasing the error associated with forward operator can ameliorate, but
what do the answers mean?
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Fully coupled
assimilation will
need data from
all components
at the same

time

Each
component
corrected by
all kinds of
observations
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Ensemble Data Assimilation for Large Geophysical Models

» Very certain that model predictions are different from observations.
» Very certain that small correlations have large errors.

» Moderately confident that large correlations are ‘realistic’.

» Very uncertain about state estimates in sparse/unobserved regions.

» Must Calibrate and Validate results (adaptive inflation/localization).

> There may not be enough observations to do this many places.

> First order of business: Improving models. DA can help with this.

> Stochastic models seem like a logical way forward.
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Code to implement all of the algorithms discussed
are freely available from:

Data

Assimilation

Research
Testbed

http://www.image.ucar.edu/DAReS/DART/
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