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1. Motivation

There are many open research questions in the relatively new
field of data assimilation for land surface models. This poster will
focus on a method that directly informs and updates the model
state with the information content of the observations.
The Data Assimilation Research Testbed (DART) is a community
facility for ensemble data assimilation developed and maintained
at the National Center for Atmospheric Research (NCAR). DART
is a software environment that makes it easy to explore a vari-
ety of data assimilation methods and observations with different
numerical models and is designed to facilitate the combination of
assimilation algorithms, models, and real (as well as synthetic)
observations to allow increased understanding of all three.

*** *

1) posterior

2) Model Integrations

3) prior

4) A forward operator
maps each model state to
an expected observation

observation DA

5) observation increments
and regression create
new model states: posterior

Model Integrations

Figure 1: Illustration for a toy ensemble size of 3.

DART directly compares the forecast model state to the observa-
tions with virtually no additional expense.

2. NOAH LSM

Figure 2: www.ral.ucar.edu/research/land/technology/lsm.php

3. DART and CESM/CLM
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Figure 4: CESM can advance multiple instances of one or more
model components simultaneously, which enables it to use DART
to assimilate observations.

4. Carbon/Nitrogen

This is a collaboration with Andrew Fox, National Ecological Ob-
servatory Network (NEON).

4.1 Flux Tower Observations
A single CLM4.5 model state was spun up for 1500 years with
site-specific information for Niwot Ridge, CO to 1 January 2000.
This single model state was replicated 64 times and each in-
stance was forced with a different member of an ensemble of
2◦-resolution atmospheric reanalyses generated in a previous DA
exercise with the Community Atmosphere Model (CAM).
• observations of tower fluxes of latent heat (LE), sensible heat

(H), and net ecosystem production (NEP)
• variables influenced by the assimilation: LIVEROOTC,

LIVESTEMC, DEADSTEMC, LEAFC, LITR1C, LITR2C,
SOIL1C, SOIL2C, SOILLIQ, all of these are unobserved

• when used, the variance inflation has a constant value of 1.1

Figure 5: An examination of the effect of assimilation for a rep-
resentative 3-day period. The assimilated model state is more
consistent with the observations. The solid lines represent the
ensemble means. The observation error bars are ± 1 S.D.

4.2 Leaf Area Index Observations
In an observation system simulation experiment (OSSE) we treat
one ensemble member as ”truth” and sample with appropriate
noise at 60 NEON site locations to observe Leaf Area Index (LAI)
every 8 days, Leaf Nitrogen every 12 days, and Net Ecosystem
Productivity and Evapotranspiration every 0.5 hours. We then in-
vestigate the impacts of assimilating these ≈ 520,000 synthetic
observations over a three-month period.

Figure 6: This ”sawtooth” plot shows LAI simulated by all 80 en-
semble members in a grid cell with observations. The increments
(updates) calculated by the filter move the ensemble towards the
observations and results in a reduction in uncertainty (spread)
around the truth. In this case, uncertainty is reduced too much
and the result is slightly biased.

Figure 7: The DART state vector contains more than 20 variables,
including all the large carbon and nitrogen pools. These can all
be updated by the filter through their covariance with observed
variables. The allocation algorithms in CLM mean observations
provide a strong constraint on many unobserved variables.

Figure 8: Change in LAI spread in posterior ensemble, 31 July
2005. The largest innovations are near the observations, but not
necessarily in the exact grid cell. Carbon pools from all grid cells
are in the DART state vector, and are updated through the co-
variance matrix, propagating information from sites to regions. A
cutoff value limits the distance over which this can occur.

5. Snow Cover

This is a collaboration with Yongfei Zhang, Jackson School of
Geosciences, University of Texas at Austin.

5.1 Precipitation Forcing Datasets
The snow representation in CLM is strongly determined by
the precipitation from forcing datasets. The ensemble of
forcing data comes from an offline CAM4/DART assimila-
tion (See Raeder 2012). Here is a brief overview of
that product compared to the Global Precipitation Climatol-
ogy Project (GPCP). CAM4/DART produces more precipita-
tion over Canada, western America and central Siberia; less
precipitation over eastern America and western Eurasia.

(c)�

(a)�

(d)�

(b)�

Figure 9: 10-year (1999-2008) DJF mean precipitation for (a)
CAM4/DART and (b) GPCP, and MAM mean precipitation for (c)
CAM4/DART and (d) GPCP.

5.2 MODIS Snow Cover Fraction Observations
The MODIS/Terra daily snow cover dataset (MOD10C2; 0.05◦ res-
olution, northern hemisphere) was pre-processed to 0.9◦ x 1.25◦

”Level 4” data following Rodell and Houser (2004). Pixels with
lower than 20% of clear sky were discarded.

Figure 10: Left: Ensemble spread of SCF for (top) DJF and (bot-
tom) MAM in 2002-2003. Ensemble spread is calculated as the
standard deviation of SCF among 40 ensemble members. SCF
values are averaged for two seasons before calculating the en-
semble spread. Right: The difference of SCF between the data
assimilation case and the open loop case averaged for (top) DJF
and (bottom) MAM.

Raeder, K.D., et al., 2012: DART/CAM: An ensemble data assim-
ilation system for CESM atmospheric models.
DOI 10.1175/JCLI-D-11-00395.1

Rodell, M., et al., 2004: The global land data assimilation system.
DOI 10.1175/BAMS-85-3-381

6. Soil Moisture

This is a collaboration with Rafael Rosolem, University of Bristol.

DART has been coupled to the NOAH Land Surface Model
(HRLDAS-V3.3) and provides an operator to return neutron in-
tensity ”observations” given a soil moisture profile. This can be
used to update the unobserved variables in the NOAH state.

6.1 Neutron Intensity Observations

COSMOS Probe Footprint 
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The COSMOS probe measures the
neutron intensity for a given volume.
The neutron intensity is related to the
amount of Hydrogen present. The
COSMIC model relates the neutron
intensity to total soil moisture.

6.2 Synthetic Observations
This is for the Santa Rita site (about 20 miles SE of Tucson) for
July 2009 using perturbed atmospheric forcing for a 54 member
ensemble assimilating hourly observations.
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6.3 Real Observations
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Figure 11: These graphics assesses the performance of the as-
similation of neutron intensity observations on soil moisture to
withheld TDT soil moisture observations. The posterior mean is
plotted in red.

7. Further Information and References

http://www.image.ucar.edu/DAReS/DART has
information about downloading DART (a full
DART tutorial is included with the distribution)
and contacting us.

Anderson, J. et. al., 2009: The Data Assimi-
lation Research Testbed: A Community Data As-
similation Facility. BAMS 90 No. 9 pp. 1283–1296
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Some of the computational resources were provided by the Com-
putational and Information Systems Laboratory at NCAR.
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