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Data Assimilation for CLM:

a comprehensive overview
in 12 minutes!
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Assimilation

Research
Testbed

Tim Hoar: NCAR with a lot of help from:
Jeff Anderson, Nancy Collins, Kevin Raeder: NCAR
Yongfei Zhang: University of Texas Austin
Andrew Fox: National Ecological Observatory Network (NEON)
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Motivation

1. The ecological state of the planet is the result of an unknowable
disturbance history.

2. Model spinup cannot be counted on to accurately re-create that
disturbance history.

Data assimilation can put the model state more in line
with the current state. This allows us to:

* Quantify ecological states
* to establish a baseline
* as a preface for ecological forecasting
* Better understand our models
* Improve our understanding of the underlying processes.
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What is Data Assimilation?

Observations combined with a Model forecast...

... to produce an analysis.

Overview article of the Data Assimilation Research Testbed (DART):

Anderson, Jeffrey, T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, A. Arellano, 2009:

The Data Assimilation Research Testbed: A Community Facility.
Bull. Amer. Meteor. Soc., 90, 1283-1296. doi:10.1175/2009BAMS2618.1
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A generic ensemble DA system like DART needs:

1. A way to make model forecasts.

2. A way to estimate what the observation would be — given the
model state. This is the forward observation operator — h.

- — The increments are
regressed onto as
many state
variables as you

t+1 like. If there is a
correlation, the

in the restart file.

——>
—» state gets adjusted
i

ensemble members
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Keys to ensemble land DA:

What parts of the model ‘state’ do we update?

1. The stock CLM restart files have hundreds of variables in them. Knowing
which ones to update is up to the researcher!

What is a “proper” initial ensemble?

1. How many model instances do we need?
2. How do we get them?
3. Does it maintain realistic uncertainty? Is it still informative?

We have imperfect knowledge of the “forcing” fields.
1. Will the inference change with slightly different forcing?
2. Does the forcing overwhelm the sparse observations?

Can models tolerate new assimilated states?

1. Model variables not necessarily ‘in balance’ or consistent anymore. What
happens in a coupled framework?

2. Silently fail?

TJH CESM 2013 pg 5
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Keys to ensemble land DA (cont’d):

5. What happens when CLM and the observations are in violent
disagreement? Can only be answered by the researcher!

1. Snow vs. bare ground

2. Senescence, etc.

6. Assimilation affects bounded quantities.
1. Soils dry beyond their physical limits, for example.

7. Need forward observation operators.

1. How do we estimate the observation value given the CLM state? Ally Touré
[NASA] here now to do this for AMSR-E brightness temperatures.

8. Observation metadata is very important for accurate forward
observation operators. This is the next thing on my to-do list.

1. Location information alone is insufficient. Land cover type needed.

TJH CESM 2013 pg 6
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CLM abstracts the gridcell into
a “nested gridcell hiearchy of
of multiple landunits, snow/
soil columns, and Plant
Function Types”. This is
particularly troublesome
when trying to convert the
L2 kel  model state to the expected
Glacier  Wetland Lake observation value because:

TJH CESM 2013 pg 7
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Location
information is

contained at this
level ONLY!

Glacier Wetland

Observations
occur here!

Vegetated

Lake Urban

TJH CESM 2013 pg 8

CLM abstracts the gridcell into
a “nested gridcell hiearchy of
of multiple landunits, snow/
soil columns, and Plant
Function Types”. This is
particularly troublesome
when trying to convert the
model state to the expected
observation value because:

Given a soil temperature
observation at a specific
lat/lon, which PFT did it
come from? No way to
know! Unless obs have
more metadata!
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Started with CCSM4

DART Multiple COUPLER 20" Century 30-

Component Data Y
TR member ensemble

Assimilation for all model

components

Important!

There are

multiple

instances of

each model

component.

DARJassimoilabethe B compset

obrepoattons iotihe CESM1 1 1

cextpgimersiegeparately -
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Check out Yongfei’s poster!

h Assimilation of the MODIS Snow Cover Fraction data through DART/CLIMA ..c vxvecsity o texas stavstin 1111 U ivers 1y OF TXAs AT AUSTIN

N( AR Y. Zhang!, T. J. Hoar?, Z.-L. Yang!, J. L. Anderson?, A. Toure®4, M. Rodell* P2~ CI] E SS ]ACKSON
1. Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States. At
NATIONAL CENTER FOR ATHOSPHERIC RESEARCH -

CENTER FOR INTEGRATED

2. The National Center for Atmospheric Research, Boulder, CO, United States. “SU””  EARTH SYSTEM SCIENCE " SCHOOL OF GEOSCIENCES

3. Universities Space Research Association (USRA), Columbia, MD, United States.

4. NASA Goddard Space Flight Center, Greenbelt, MD, United States

(yongfei@utexas.edu)
v Compare precipitation to Global Precipitation Cli Project (GPCP) v Ensemble spread v Innovation
P Ensemble Spread of SCF SCF: Data Assimilation Minus Open Loop

v' Snow plays a unique role in global water and energy cycles. The special physical properties (a
(high albedo, low thermal conductivity, and phase change ability) largely modulate energy ooy CAMADART,

and water exchanges between the atmosphere and the land surface. Asa common
snowpack measurement, snow water equivalent (SWE) is the amount of water contained
within the snowpack, which is important for water resources management and hydrological

forecasts in regions where streamflow depends on snowmelt. However, high-quality large- A

scale SWE datasets are generally not available. 30E ‘wE 90E_ 120E_150E 180 150W 120W 90W 60W 30W 30E 60E_ 90E 120E 150E 180 150W 120W 90W 60W 30W 0 120E 150E 180 150W 120W 90W  60W 30E 60E 90E 120E 150E
X O T Te— T —

v Some recent studies have demonstrated the value of satellite-retrieved SWE data on local

or regional scales. This study will develop and refine, on global scales, a multi-sensor data

assimilation system, through which observations of MODIS SCF and GRACE terrestrial water

storage (TWS) change as well as other high-quality satellite data can be assimilated.
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The DART/CLM4 Data Assimilation System e M e e W e e e e 0 o tow ww oou 0 30E 60E 90E 120E 150E 180 150W 120W 90W GOW 30W
e — T — oz s o s, L L R R -0 20 E} 5 20 0
3 Fig. 4 10-year (1999-2008) DJF mean of precipitation for (a) CAM4/DART and (b) Global Precipitation Climatology Project Fig. 8 Ensemble spread of SCF for (a) DJF and (b) MAM in 2002 Fig. 9 The difference of SCF between the data assimilation case
Atmosphere Satellite (GPCP), and MAM mean of precipitation for (c) CAM4/DART and (d)GPCP. 2003. Ensemble spread is calculated as the standard deviation of and the open loop case averaged for (a) DIF and (b) MAM.
Component Observations SCF among 40 ensemble members. SCF values are averaged for
(CAMa) (MODIS/GRACE) S0F = tanh(e——Pon 5 two seasons before calculating the ensemble spread.
2.52(PaafPren)* Pttt 1111 4 v Compared to GPCP, CAM4/DART produces more
36 :g:&;mw F precipitation over Canada, the western America v Time series of SCF
.. =100, 200, 300400500 kglr® T 32 F and the central Siberia, and less precipitation over (a) One grid in NA forest (56N, 236.25E) (b) One grid in NA grassland (42.9N, 256.25F)
CESM (rom leftto right) E 2 the eastern America, and the western Eurasia. 12 L L L L L 1 12 i 1 I i Fig, 10 Time seres of
Coupler % v’ The seasonal cycle of CAM4/DART precipitation 00 L SCF for four grids: (a)
0 oz LR S—— 1 & 24 F has comparable amplitude to GPCP. one grid in NA forest,
Niu and Yang, 2007 20 ¥" While CAM4 tends to have cold bias and excessive 06 o 0 o r (b)onegridin NA
precipitation in the Arctic region (de Boer et al., 2 _Hopis | erassland, (c) one grid
T T T T T T T T . : 03 in Eurasia forest, and
Land swe Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011), GPCP is found to underestimate (d) one grid in E""asia
. R . 004 - i
Cﬂ"wl)-‘ ” 3D restart fields ‘Sire\o\:;‘ C Sl r melts Fig. 5 10-year (1999-2008) mean seasonal cycle of precipitation in some regions ( Adler et al., 2003) grassland. Blue line
(LT PT sairspace T water 1 precipitation for GPCP and CAM4/DART. The error bars T T T T T No D n P Me A vy represents the CLM4
represent 2 standard deviations. Nov. Dec dan  Feb  Mar e May . ) open loop simulation.
(c) Ope grid in Eurgsia forpst (504N, 1]1.25E), (d) One grid in Eurasia grassland (47.6N, 72.5E) Black dots represent
Fig. 1 Schematic of the data assimilation system. Fig. 2 (upper) The visualization of SCF scheme in 12 12 | L 1 1 1 N

Satellite Observations MODIS observed SCF.
[ Green dots represent
the posterior SCF. Red

line represents the

CLM4. (bottom) The concept of SWE.

v'The Data Assimilation Research Testbed (DART) (http://www.image.ucar.edu/DAReS/DART/)

v MODI il MOD10C2; 0.05° resolution; hern hemisph
is a comprehensive data assimilation software environment that can help modelers and 0DIS/Terra daily snow cover (MOD10C2; 0.05° resolution; northern hemisphere)

Retrieved using NDSI [Salomonson et al., 2004]

observational scientists easily explore a variety of data assimilation methods and observations NDSI = band 4 — band 6 DART/CLM4 result that
with different numerical models. This study represents the first effort of linking DART and a °" " band 4 + band 6 [ assimilates SCF but
land surface model. [ updates SWE.

v' Pre-processed to 0.9 ° x1.25 ° “Level 4” data following Rodell and Houser [2004].
Pixels with lower than 20% confidence index (percentage of clear sky over certain grids) will be discarded.

¥'The Community Land Model version 4 (CLM4), one of the state-of-art land surface models,
simulates a snowpack with multi-layers (1-5 layers) depending on its thickness, and accounting
for internal physical processes such as water-heat transport, thawing-freezing, liquid water
retention, and densification. The snow cover fraction is a function of snow density following

LEIS Conclusions

Niu and Yang (2007). v Localization: Localization: a technique to reduce sampling error by limiting the influence of observations ¥ Alocalization distance of 0.05 radians stands out among a series of localization distances, producing the
" " to nearby grid cells. smallest RMSE.
Meteorological Forcings from DART/CAM4 @) = (o] s 25.75N ¥'In winter, SCF ensemble spread is mainly located in lower-middle latitude regions. In spring, the spatial pattern
. i aam . . L p— L L 700 of SCF ensemble spread extends northward, indicating that the uncertainty of modeled snow in high latitude
Atmcsphel:c Reanalysis _ B + #otAssintued: 000 regions increases as snow starts melting.

e b are : v Afreely nsemble of Y L \ e g o0 ¥'Snow data assimilation shows little change on SCF at higher-middle and high latitudes in winter due to the fact

data Cfeate_d by DART and fh_e Community = ) g that SCF in CLM4 reaches the unity too fast compared to MODIS data.

Atmospheric Model (CAM4) is used to drive the . A g/ A o 3 ¥'The effectiveness of data assimilation on model states varies with vegetation types, with mixed performance

SLN:‘ensemble merlnbers. , " RN * over forest regions and consistently good performance over grassland areas.

The CAMA4 reanalysis is similar to the NCEP IEIEIEIREE 2000
reanalysis, except the former is an ensemble @ _ 1000 References
and a product of the coupled DART and CAM4. o wm g - . : . . . o Adler, R. F., G.J. Huffman, A. Chang, R. Ferraro, P.-P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Cruber, J. Susskind,
R R P.  Arkin,and E. Nelkin (2003), The version-2 GPCP monthly precipitation analysis(1979-present), J. Hydrometeoro., 4,
Generstessreadin v The CAM-produced ensemble reanalysis 1y . N . . . . 1147-1167.
oot forcing fields are physically and mutually CE ) Fig. 7 Evolution of daily forecast (prior) RMSE of SCF in the de Boer, G., W. Chapman, J. Kay, B. Medeiros, M. Shupe, S. Vavrus, and J. Walsh (2011), A Characterization of the Present-Day Arctic
=g forcing fieds are physically and mutualy Rl - Iatitudinal bands spanning from 25°to 75°N. Blue circles Atmosphere in CCSM4, J. Climate, 25, 2676-2695.
given ] AT o show the number of observations available and blue discs Hoar. T., Data assimilation with CLM & DART, presented at the 17* CESM Workshop in Breckenridge, CO, USA.

ensemble spread spatio-temporally. T show the number of observations that are actually Niu, G.-Y., and Z.-L. Yang (2007), An observation-based formulation of snow cover fraction and its evaluation over large North American.
Fig. 3 Geopotential heights (500 hPa) for half (40) of  v'The reanalysis may inherit some of the § . assimilated at each time. Red line represents RMSE of the river basins, J. Geophys. Res., 112, D21101, doi:10.1029/2007JD008674.
the ensemble members typically used in DART/CAM  gystematic biases that are found in the Fig. 6 Variations of forecast RMSE (blue dots on the left Y experiment that uses a localization distance of 0.05 radians Salomonson, V. V. and I. Appel (2004), Estimating fractional snow cover from MODIS using the normalized difference snow index.
assimilations for 1200 UTC 17 Feb 2003 (Hoar et al,  cant model axis) and analysis RMSE (red dots on the right Y axis) of eight and black ensemble lines show RMSE of experiments with
2012]. model. experiments with localization distances (radians onthe X other seven localization distances (0.01, 0.03, 0.07, 0.1, 0.15, Acknowledgements

ds) for () 25-75N, (b) 45-75N, (c) Eurasia, and (d) NA. . 3 radians). ] N
axis) for (@) o {c) Eurasia, and (d) 0.2,and 0.3 radians) This work is supported by NASA Grant NNX09AJ48G and the NCAR Advanced Study Program.
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For more information:

CAM WRF
GITM

CLM i

Assimilation

AM2 Research
Testbed

COAMPS www.image.ucar.edu/DAReS/DART NOAH

dart@ucar.edu MPAS_ATM

TIEGCM COAMPS_nest
sQc NAAPS MPAS_OCN P8I 1d

NCOMMAS PEZLYR - o
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Slides held in reserve
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Looking at it another way:

100 r
Some unobserved |
: 90
state variable. e.g. The plane defining the
live root carbon, 80 relationship between the
dead root carbon, or observation and the model —
canopy water ... I :
Py 60 as defined by the
50 1 ensemble.
40
Directly from
ensemble member 1 “ I
10
Result of the forward 0 2 3 4 5 6 7 8 9 10
observation operator for observation

ensemble member 1 Could be Soil Temperature
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100
90 r

Directly from — 70 @

ensemble member 2 60 -

50 r

20
10
O I L 1 * 1 1 |* ] |
0 1 2 3 4 5 6 7 8 9 10
Observatlon 'Nobservaﬁonn

from ensemble

member 2
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In our global atmospheric
assimilations, we us
100

90 r 3 1S NOT ENOUGH!
80 r Regression Error!

Least-squares fit

3 4

Now, we can calculate out observation
increments any way we want.
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100 1
90 r
80 r
SR
70 1 | |
c) Which means 60 F b) \rl]\/hlc.h projects
the unobserved gy | to here:
Posterior should .?‘
be: 40 ‘
— ¢
20
10
0 P S P T O S
5 6 7 8 9 10
observation

a) The “observation”
Posterior for member 1
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Some unobserved
state variable like:
live root carbon,
dead root carbon,
canopy water ...
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The plane defining the
relationship between the

100 T observation and the model —
W07 as defined by the
80 r ensemble.
70
N
- “
; | . * .* r -* 1 )
o 1 2 3 4 5 & 7 8 9 10
observation

Could be Soil Temperature
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| got these from Dave Lawrence. | don’t know if he made them or not — but Thanks to whomever did!
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The plane defining the
relationship between the
observation and the model -

90 | as defined by the
Some unobserved  go+ ensemble

state variable like:
live root carbon,
dead root carbon,
canopy water ...

100

REPEATED FOR k-ox—e
REFERENCE observation

Could be Soil Temperature
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Potential Problem

This posterior 100

MAY or MAY NOT 20

be realistic! d’

GOL
Can the 50
model
tolerate this
new state?

5 6 7 8 9 10

observation

If the observation is “too far” away, it is rejected.
What is “too far”?
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Creating the initial ensemble of ...

time

IIS un u ” - ° e, ®
I /;p__ Getting a proper initial
—_— f , ensemble is an area of

‘ a long time active research.

1. Replicate an equilibrated state N times.

2. Use a unique (and different!) realistic forcing for each
to induce separate model trajectories.

3. Run them forward for “a long time”.

DART has tools we are using to explore how
much spread we NEED to capture the
uncertainty in the system. |
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The ensemble advantage.

You can represent uncertainty.

time

Free run / open loop

The ensemble spread
frequently grows in a free
run of a dispersive model.

A good assimilation
reduces the ensemble spread =
and is still representative

and informative. ~——

-

observatlon tlmes
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Assimilation uses 80
members of 2° FV CAM
forced by a single ocean

Atmospheric
Ensemble

Reanalysis (Hadley+ NCEP-0I2)
120W \ 120e and produces a very
competitive reanalysis.
500 hPa GPH
Feb 17 2003
oo O(1 million)
atmospheric obs
are assimilated
every day.
60W
1998-2010+
Can use these to . 4x daily is
available.

force other models.
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Pros and Cons

* 80 realizations/members

 Model states are self-consistent
 Model states consistent with obs

* Available every 6 hours for 12+ years

* Relatively low spatial resolution has
implications for regional applications.
* Suboptimal precipitation characteristics.
* Available every 6 hours
* higher frequency available if needed.
* Only have 12 years ... enough?

I’'m not going to prove it here, but | believe having
an ensemble of forcing data is crucial
to land data assimilation.
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In collaboration with Andy Fox
(NEON): An experiment at L,
Niwot Ridge _ *“*

9.7 km east of the Continental Divide

C-1is located in a Subalpine Forest

(402 02' 09" N; 1052 32' 09" W; 3021 m)

One column of Community Land Model (CLM)
e Spun up for 1500 years with site-specific information.

64 ensemble members

Forcing from the DART/CAM reanalysis,

Assimilating tower fluxes of latent heat (LE), sensible heat (H), and net

ecosystem production (NEP).

Impacts CLM variables: LEAFC, LIVEROOTC, LIVESTEMC, DEADSTEMC,

LITR1C, LITR2C, SOIL1C, SOIL2C, SOILLIQ ... all of these are unobserved.
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The HARD part is: What do we do when SOME (or none!
of the ensembles have [snow,leaves,precipitation, ...]
and the observations indicate otherwise?

Corn Snow? Sugar Snow? Wet Snow?
New Snow? Dry Snow?

“Champagne Powder”? Crusty Snow?

?
Slushy Snow- Old Snow?
Dirty Snow?

?
Early Season Snow? Packed Snow:

Snow Density? Snow Albedo?

S ST el The ensemble must have some uncertainty, it
cannot use the same value for all. The model

expert must provide guidance. It’s even worse
for the hundreds of carbon-based quantities!

Sy Data
\rr ¢ ssimilation
o
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NOAH-DART: Integrated Soil Moisture

Daily Averages
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