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The Prediction Problem for Geophysical Models

Dynamical system governed by (stochastic) Difference Equation:
dx, = f(x,,t)+G(x,,t)dB,, =0 (1)
Observations at discrete times:
Y, :h(xk,tk)+vk; k=1,2,..., t.,,>t 21, (2)

Observational error white in time and Gaussian (nice, not essential).

v, > N(0,R,) 3)
Complete history of observations is:
Y, ={y;t, <7} (4)

Goal: Find probability distribution for state at time t and subsequent:

p(x,t | K) Analysis p(x,t+ IK) Forecast (5)
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What do we want from an ensemble (set) of analyses/forecasts?

» Random draw from forecast or analysis distribution.
Normally just a simple random draw.

» Could try to draw using some ‘proposal’ density.
Example, sample unlikely high-impact events more.
Hard to do, not discussed further here.
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Properties of Random Sample Ensemble

» Ensemble members indistinguishable from ‘truth’.
If observations (and model) are unbiased.

» Observations are NOT drawn from same distribution.
They also include an observational error.
But they are all we know.
Have to account for these differences when verifying.
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Computing Sample Statistics from Ensembles

» Can compute sample statistics from ensemble:
Mean,

Variance / standard deviation,

Higher order moments,

Clusters,

Probabilities of events, P(Rainfall > 1.0mm).

» Can compute statistics for any function.

» If observation is not in state, can compute an
estimate for each ensemble (forward operator).
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Common Ensemble Generation Mechanisms

>

Empirical perturbations around a single mean:
Mean usually from deterministic assimilation.

Breeding: Grow perturbations around evolving mean.

Singular vectors: Sample rapidly growing
perturbations to an evolving mean.

Ensemble data assimilation: Directly estimate
forecast distribution.
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Common Ensemble Generation Mechanisms: Weaknesses

» Empirical perturbations around a single mean:
Usually assume gaussian structure,
Empirical covariance estimates,
No use of observations.

» Breeding:
Empirical normalization size and period,
No direct use of observations.

» Singular vectors:
Implicit assumptions about projection of distribution,
No direct use of observations.
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Ensemble Data Assimilation Weaknesses

* Assumes all distributions are gaussian.
* Assumes forecast model is linear.
 Assumes observation forward operator is linear.
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A One-Dimensional Ensemble Kalman Filter

Represent a prior pdf by a sample (ensemble) of N values:
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A One-Dimensional Ensemble Kalman Filter

Represent a prior pdf by a sample (ensemble) of N values:

g 0.4f Sample Mean
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Temperature

N
Use sample mean T:ZE/N -
n=1 —\2
and sample standard deviation Or :\/Z(Tn _T) /(N_l)
n=1 —
to determine a corresponding continuous distribution Normal(T,GT)
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A One-Dimensional Ensemble Kalman Filter: Model Advance

If posterior ensemble at time t,isT,,, n=1, ..., N

w 0.3
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A One-Dimensional Ensemble Kalman Filter: Model Advance

If posterior ensemble at time t,isT,,, n=1, ..., N,
advance each member to time t, with model, T, , = L(T{ ,) n=1, ...,N

5 0.3
Q. 0.2} t2 Prior
Y~ 0.1} Ensemble
w 0.3 K \
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— 0.1f Ensemble, \ |
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A One-Dimensional Ensemble Kalman Filter: Model Advance

Same as advancing continuous pdf at time t, ...
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A One-Dimensional Ensemble Kalman Filter: Model Advance

Same as advancing continuous pdf at time t,
to time t, with model L.
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A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Fit a Gaussian to the sample.
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A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation

5 ~_-0bs. Likelihood
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Get the observation likelihood.
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A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation

Pdsterior PDF?
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Temperature

Compute the continuous posterior PDF.
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A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation

Pdsterior PDF?

Zoal ; ;
L0
©
e
a 0.2 |

0 * * .ﬁ :

-4 -2 0 2 4

Temperature

Use a deterministic algorithm to ‘adjust’ the ensemble.
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A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation

Pdsterior PDF
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First, ‘shift’ the ensemble to have the exact mean of the posterior.
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A One-Dimensional Ensemble Kalman Filter: Assimilating an Observation

Pdsterior PDF,
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First, ‘shift’ the ensemble to have the exact mean of the posterior.
Second, linearly contract to have the exact variance of the posterior.
Sample statistics are identical to Kalman filter.
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Ensemble Kalman Filter Weaknesses

» (Ensemble) KF optimal for linear model, gaussian likelihood.
» In KF, only mean and variance have meaning.

» Ensemble allows computation of many other statistics.
» What do they mean? Not entirely clear.

» Example: Kurtosis. Completely constrained by initial ensemble.
It is problem specific whether this is even defined!
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Ensemble Kalman Filter Weaknesses

Figure 1
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Ensemble Kalman Filter Weaknesses

) O Figure 1
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Use Caution with Any Ensemble Statistics

» No a priori reason to believe most statistics.

» Ensemble mean may be approximately correct.

» Variance may be correct from ensemble DA.

» Anything else, who knows (a priori).
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Calibration and Validation

» No a priori reason to believe most statistics.

» Need to calibrate and validate (verify).

» No more about calibration here, but it's essential.

» Will only validate against observations.

(Weather services sometimes do weird other stuff).
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Caution: Verifying Analyses

» Best practice is to verify forecasts.
Observations at forecast times are independent.

» Verifying analyses can be tricky.
Assimilated observations are not independent of analysis.
Don’t expect them to have same relationship to ensembile.
Can verify analyses against withheld (not used) observations.

» Assimilated observations be used to verify analyses with
ensemble DA.

Requires sophisticated processing, rarely used.
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Verifying Ensemble Forecasts: Ensemble Mean

» Need observation forward operator to compare to observations.

» Can compute RMSE or MAE of ensemble mean averaged over
sets of observations.

(Sets can span time and/or space).

» Generally want RMSE and MAE to be smaller.
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Verifying Ensemble Forecasts: Ensemble Variance

» Sample variance is estimate of squared error of ensemble mean
from truth.

Sample standard deviation is estimate of error.
Sometimes called spread / skill relation.
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Verifying Ensemble Forecasts: Ensemble Variance

» But, only know observation, not truth.
» Have estimate of observation error variance (from somewhere).

» Estimate of squared error from observation is sum of ensemble
and observation error variances.

» Square root of variance sum is sometimes called total spread.

» Are RMSE and total spread the same for set of observations?
If not, ensemble isn’t what we’d hoped.
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Verifying Ensemble Forecasts: Other Statistics

» Can compute many sample statistics from ensemble.
» When verifying, remember that observations aren’t the truth.
» Example: What's probability that precipitation exceeds 1mm?

> First add random draw from observation error to ensemble
members.

» Then, see what fraction of these are greater than 1mm.
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The Rank Histogram

A non-parametric tool to evaluate the entire ensemble
distribution.
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The Rank Histogram

Draw 5 values from a real-valued distribution.
Call the first 4 ‘ensemble members’ .
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The Rank Histogram

These partition the real line into 5 bins.
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The Rank Histogram

Call the 5th draw the ‘truth’.
1/5 chance that this is in any given bin.

Bin1 % Bin2 *_*_Blﬂ.a_* Bin4 ¥ Bin5
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Temperature
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The Rank Histogram

Rank histogram shows the frequency of the truth in
each bin over many assimilations.
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The Rank Histogram

Rank histogram shows the frequency of the truth in
each bin over many assimilations.

ux£
Count
(@) N

1

0 0.5 1 1.5 2 2.5 3 05
Temperature :

0

1 2 3 4 5
Bin

ICAP: 22 October 2014 pg 37



The Rank Histogram

Rank histogram shows the frequency of the truth in

each bin over many assimilations.
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The Rank Histogram

Rank histogram shows the frequency of the truth in
each bin over many assimilations.
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The Rank Histogram

» Rank histograms for good ensembles should be
uniform (caveat sampling noise).
» Want truth to look like random draw from
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The Rank Histogram

A biased ensemble leads to skewed histograms.
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The Rank Histogram

An ensemble with too little spread gives a u-shape.
This is the most common behavior for geophysics.
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The Rank Histogram

An ensemble with too much spread is peaked in the center.
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The Rank Histogram

» Observations are not the truth.

» Must add random draw from observation error distribution

to each ensemble member first.
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Multi-model Ensemble Verification

» Check statistics for each model independently.

» May want to weight ensembles when computing mean,
variance, other statistics.

» For instance, weight by inverse of time mean model error
variance.
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Are Two Ensembles Different?

» A different but interesting problem.

» Use a variety of standard statistical tools.
T-test on points, or regions, or time means, or ...
Kolmogorov-Smirnov test on full ensembles at points.

» Need to do field significance when statistics are computed
at points.
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