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What	
  am	
  I	
  going	
  to	
  talk	
  about?	
  
	
  

•  What’s ensemble data assimilation? 
•  What’s DART? 
•  What’s parallel about DART? 
•  What’s not so parallel about DART? 

•  Software engineering concerns 
 
 

•  Data decomposition 
•  IO 
•  Algorithm and communication 



What’s	
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  data	
  assimila(on?	
  
	
  



group of model forecasts 

Ensemble	
  Data	
  Assimila(on	
  



group of model forecasts 

Measurements 

Ensemble	
  Data	
  Assimila(on	
  



group of model forecasts 

Measurements 
Improved estimate 

Ensemble	
  Data	
  Assimila(on	
  



What’s	
  DART?	
  



DART	
  is	
  used	
  at:	
  	
  

•  Public	
  domain	
  soBware	
  for	
  
Data	
  Assimila(on	
  

–  Well-­‐tested,	
  portable,	
  extensible,	
  
free!	
  

•  Models	
  
–  Toy	
  to	
  HUGE	
  

•  Observa(ons	
  
–  Real,	
  synthe(c,	
  novel	
  

•  An	
  extensive	
  Tutorial	
  
–  With	
  examples,	
  exercises,	
  

explana(ons	
  

•  People:	
  The	
  DAReS	
  Team	
  

43	
  UCAR	
  member	
  universi(es	
  
More	
  than	
  100	
  other	
  sites	
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  to	
  change	
  anything?	
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Ensemble size = 4 

4 tasks have a whole copy of 
the model state 

Other tasks do not 

1 2 3 4

task 

m
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y 
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•  Hard minimum on calculation time 
 
•  Hard maximum on model size 
 
•  You have to move all your data 

Limita(ons	
  of	
  having	
  these	
  two	
  decomposi(ons:	
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Idea:  
Only use the assimilation decomposition 
 
Use one sided communication to grab state elements 
when needed 

Reduce data movement 

Removes hard memory limit 

Vectorization of forward operator calculations 
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More scalable forward operator 

4 tasks doing all 
observations for 1 
copy 

Lots of tasks doing some 
observations for all copies 

Calculation 

Memory 
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operator 

wall clock core seconds 



processors	
   512	
   4096	
  

state	
  complete	
   1.01s	
   0.96s	
  

distributed	
  state	
   0.73s	
   0.18s	
  

CAM FV forward operator 
Specific humidity only : 23 090 observations 



54, 400 observations 
WRF forward operator 

processors	
   1024	
   4096	
  

state	
  complete	
   0.6s	
   0.6s	
  

distributed	
   2.0s	
   0.7s	
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All DART requires is that there are multiple 
model forecasts 
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when you can start DART 

IO for each ensemble member 
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Should the IO speed drive the data 
layout? 
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Algorithm	
  choice	
  and	
  communica(on	
  

•  The forward operator parallelizes  

•  The assimilation parallelizes 

•  Communication does not scale  
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Broadcasts 

do i = 1:number of observations 

end do  

i = 8 

8
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Further	
  Complica(ons	
  

What about all the users who are happy with DART as it is? 

•  Allow whole state to be stored if the memory is available 
 
•  Need to remain user extensible 

•  Backward compatible? 

•  Manageable code 

Or, software engineering concerns 



Collaborators?	
  
dart@ucar.edu 



Learn more about DART at:	
  

www.image.ucar.edu/DAReS/DART 

dart@ucar.edu 
 
hkershaw@ucar.edu 
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Observations that are more than 0.05 apart are independent. 

0 0.2 0.4 0.6 0.8 1
0  

0.2

0.4

0.6

0.8

1  

Parallel	
  Observa(on	
  Processing	
  



•  Find minimum number of subsets of independent 
observations 

•  Mutual exclusion scheduling problem 
•  Use greedy algorithm: 

 Decreasing Greedy Mutual Exclusion (DGME) 

Parallel	
  Observa(on	
  Processing	
  



  
Red shows observations in a given subset.  
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Last subsets only have a few observations each. 
  -These are in regions where satellite and radar overlapped. 
  - May be significant load balance issue. 
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GPS ACARS and Aircraft 

Radiosondes Sat Winds 

Observations 1 December 2006 
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Parallel netcdf  
 
•  Can we use this to transpose during IO? 
 
•  Simple for DART restart files 

 - stride through a vector 
 
•  Not simple for model restart files 

 - can’t ignore the dimensionality of each variable 
 
•  Should the IO speed drive the assimilation data layout? 



Irregular	
  Observa(ons	
  -­‐>	
  Load	
  Balance	
  Challenges	
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25,000 obs. 

Radar: 
25,000 obs. 

Uniform: 
127,000 obs. 

Simulate performance for idealized observation set (2% of obs 
shown). 
 



IO 

You need to run a bunch of model forecasts 

Convert the model output to DART format 

Do data assimilation with DART 

Convert back to model input 
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Observation – at a vertical location 
                       in pressure/height/… 

grid points at each model level 

The variables in the state determine 
the location of the observation   

Calcula(on	
  of	
  the	
  Forward	
  Operator	
  

Interpolate to find the expected value of 
the observation  



An observation can be in different model levels 
depending on the state  

But vectorization is not perfect: 

Observation 
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First,	
  look	
  at	
  the	
  serial	
  version	
  of	
  the	
  
algorithm	
  

ensemble approximation of the observation  

observation and error variance  

updates 
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Broadcast 
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You have to move data 
from the model to DART 
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•  Scripting  
•  Queuing 
•  Scaling 
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What’s	
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  about	
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ensemble approximation of the observation  

observation and error variance  

updates 



Why	
  do	
  we	
  need	
  to	
  change	
  anything?	
  
	
  Or, what’s not so parallel about DART? 

•  Multiple data decompositions 
 
•  IO 
 
•  Algorithm choice and communication 
 



The forward operator does not scale beyond  
   processors = ensemble members 

Users have models that are too large to fit 
into the memory of a single node 

You have to transpose data between 
decompositions 

Limita(ons	
  of	
  having	
  these	
  two	
  decomposi(ons:	
  
	
  


