

Parallelization Challenges for Ensemble Data Assimilation

Helen Kershaw

Institute for Mathematics Applied to Geophysics, National Center for Atmospheric Research Email: <u>hkershaw@ucar.edu</u>

What am I going to talk about?

- What's ensemble data assimilation?
- What's DART?
- What's parallel about DART?
- What's not so parallel about DART?
 - Data decomposition
 - IO
 - Algorithm and communication
- Software engineering concerns

What's ensemble data assimilation?

Ensemble Data Assimilation

group of model forecasts

Ensemble Data Assimilation

group of model forecasts

Measurements

Ensemble Data Assimilation

group of model forecasts

Measurements

Improved estimate

What's DART?

DART is used at:

43 UCAR member universities More than 100 other sites

- Public domain software for Data Assimilation
 - Well-tested, portable, extensible, free!
- Models
 - Toy to HUGE
- Observations
 - Real, synthetic, novel
- An extensive Tutorial
 - With examples, exercises, explanations
- People: The DAReS Team

pressure temperature vapor mixing ratio

DART state vector

multiple copies

multiple copies

multiple copies

Data decompositions

All copies of some variables available to a single processor

Whole model state available to a single processor

Data decompositions

All copies of some variables available to a single processor

Whole model state available to a single processor

Data decompositions

All copies of some variables available to a single processor

Whole model state available to a single processor

Why do we need to change anything?

What does DART look like in memory?

All copies of some variables available to a single processor

Whole model state available to a single processor

What does DART look like in memory?

Ensemble size = 4

4 tasks have a whole copy of the model state

Other tasks do not

Calculation of the forward operator

Calculation of the forward operator

What the model thinks the observation should be

Calculation of the forward operator

What the model thinks the observation should be

Calculation of the forward operator

What the model thinks the observation should be

Limitations of having these two decompositions:

- Hard minimum on calculation time
- Hard maximum on model size
- You have to move all your data

Use **one sided communication** to grab state elements when needed

Use **one sided communication** to grab state elements when needed

Reduce data movement

Removes hard memory limit

Use **one sided communication** to grab state elements when needed

Reduce data movement

Removes hard memory limit

Vectorization of forward operator calculations

Memory

Memory

Memory

Calculation

4 tasks doing all observations for 1 copy

Calculation

Lots of tasks doing some observations for all copies

4 tasks doing all observations for 1 copy

Lorenz_96 forward operator

core seconds

wall clock

CAM FV forward operator Specific humidity only : 23 090 observations

You have to move data from the model to DART

10

Ideally:

10

Ideally:

Never looks like this in memory

All DART requires is that there are multiple model forecasts

time

10

time

ensemble members

Model run ~1000

time

10

10

time

time

time

Should the IO speed drive the data layout?

Algorithm choice and communication

- The forward operator parallelizes
- The assimilation parallelizes

Algorithm choice and communication

- The forward operator parallelizes
- The assimilation parallelizes
- Communication does not scale

Or, software engineering concerns

Or, software engineering concerns

Or, software engineering concerns

What about all the users who are happy with DART as it is?

• Allow whole state to be stored if the memory is available

Or, software engineering concerns

What about all the users who are happy with DART as it is?

• Allow whole state to be stored if the memory is available

Does this mean a vectorized and non-vectorized version of the forward operator for each model?

Or, software engineering concerns

- Allow whole state to be stored if the memory is available
- Need to remain user extensible

Or, software engineering concerns

- Allow whole state to be stored if the memory is available
- Need to remain user extensible
- Backward compatible?

Or, software engineering concerns

- Allow whole state to be stored if the memory is available
- Need to remain user extensible
- Backward compatible?
- Manageable code

Collaborators?

dart@ucar.edu

Learn more about DART at:

www.image.ucar.edu/DAReS/DART

dart@ucar.edu

hkershaw@ucar.edu

Observations that are more than 0.05 apart are independent.

- Find minimum number of subsets of independent observations
- Mutual exclusion scheduling problem
- Use greedy algorithm: Decreasing Greedy Mutual Exclusion (DGME)

Parallel Observation Processing

Red shows observations in a given subset.

Irregular Observations -> Load Balance Challenges

Parallel Observation Processing

Last subsets only have a few observations each.

- -These are in regions where satellite and radar overlapped.
- May be significant load balance issue.

Observations 1 December 2006 GPS ACARS and Aircraft

- Can we use this to transpose during IO?
- Simple for DART restart files

• Not simple for model restart files

- Can we use this to transpose during IO?
- Simple for DART restart files
 - stride through a vector
- Not simple for model restart files

- Can we use this to transpose during IO?
- Simple for DART restart files
 - stride through a vector
- Not simple for model restart files
 - can't ignore the dimensionality of each variable

- Can we use this to transpose during IO?
- Simple for DART restart files
 - stride through a vector
- Not simple for model restart files
 - can't ignore the dimensionality of each variable

- Can we use this to transpose during IO?
- Simple for DART restart files
 - stride through a vector
- Not simple for model restart files
 - can't ignore the dimensionality of each variable
- Should the IO speed drive the assimilation data layout?

Irregular Observations -> Load Balance Challenges

Simulate performance for idealized observation set (2% of obs shown).

You need to run a bunch of model forecasts

- Convert the model output to DART format
- Do data assimilation with DART
- Convert back to model input

Observation – at a vertical location in pressure/height/...

- grid points at each model level

Observation – at a vertical location in pressure/height/...

- grid points at each model level

The variables in the state determine the location of the observation

Observation – at a vertical location in pressure/height/...

- grid points at each model level

The variables in the state determine the location of the observation

Interpolate to find the expected value of the observation

But vectorization is not perfect:

An observation can be in different model levels depending on the state

What's parallel about DART?

First, look at the serial version of the algorithm

Algorithm choice and communication

Algorithm choice and communication

Worst-case scenario

Convert the model output to DART format

read from file write to file

Convert the model output to DART format

read from file write to file

Do data assimilation with DART

read from file write to file

Convert the model output to DART format

read from file write to file

Do data assimilation with DART

read from file write to file

Convert back to model input

read from file write to file

Models do not run ensemble complete

You have to move data from the model to DART

10

- Scripting
- Queuing
- Scaling

10 Model run ~10000 tasks ensemble members Restart files for CESM each model

time

Should the IO speed drive the data layout?

Notation

What's parallel about DART?

observation and error variance

ensemble approximation of the observation

Why do we need to change anything?

Or, what's not so parallel about DART?

- Multiple data decompositions
- 10
- Algorithm choice and communication

Limitations of having these two decompositions:

The forward operator does not scale beyond processors = ensemble members

Users have models that are too large to fit into the memory of a single node

You have to transpose data between decompositions

