Parallelization Challenges for Ensemble Data Assimilation

Helen Kershaw

Institute for Mathematics Applied to Geophysics, National Center for Atmospheric Research
Email: hkershaw@ucar.edu
What am I going to talk about?

• What’s ensemble data assimilation?
• What’s DART?
• What’s parallel about DART?
• What’s not so parallel about DART?
 • Data decomposition
 • IO
 • Algorithm and communication
• Software engineering concerns
What’s ensemble data assimilation?
Ensemble Data Assimilation

group of model forecasts
Ensemble Data Assimilation

group of model forecasts

Measurements
Ensemble Data Assimilation

Group of model forecasts

Measurements

Improved estimate
What’s DART?
DART is used at:
43 UCAR member universities
More than 100 other sites

- Public domain software for Data Assimilation
 - Well-tested, portable, extensible, free!
- Models
 - Toy to HUGE
- Observations
 - Real, synthetic, novel
- An extensive Tutorial
 - With examples, exercises, explanations
- People: The DARES Team
The State
The State
The State
The State

pressure
temperature
vapor mixing ratio
The State

pressure
temperature
vapor mixing ratio

DART state vector
The State

pressure
temperature
vapor mixing ratio

multiple copies
The State

pressure
temperature
vapor mixing ratio

multiple copies
The State

pressure
temperature
vapor mixing ratio

multiple copies
• Apply the updates in parallel
• Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Assimilation

- Apply the updates in parallel
- Round robin layout for load balancing
 - localization
Data decompositions

Whole model state available to a single processor

All copies of some variables available to a single processor
Data decompositions

Whole model state available to a single processor

All copies of some variables available to a single processor
Data decompositions

Whole model state available to a single processor

All copies of some variables available to a single processor
Why do we need to change anything?
What does DART look like in memory?

Whole model state available to a single processor

All copies of some variables available to a single processor
What does DART look like in memory?

Ensemble size = 4

4 tasks have a whole copy of the model state

Other tasks do not
Why do we use this decomposition?

Calculation of the forward operator
Why do we use this decomposition?

Calculation of the forward operator

What the model thinks the observation should be
Why do we use this decomposition?

Calculation of the forward operator

What the model thinks the observation should be
Why do we use this decomposition?

Calculation of the forward operator

What the model thinks the observation should be
Limitations of having these two decompositions:

- Hard minimum on calculation time
- Hard maximum on model size
- You have to move all your data
Idea:
Only use the assimilation decomposition
Idea:
Only use the assimilation decomposition

Use **one sided communication** to grab state elements when needed
Idea:
Only use the assimilation decomposition

Use **one sided communication** to grab state elements when needed

Reduce data movement

Removes hard memory limit
Idea:
Only use the assimilation decomposition

Use **one sided communication** to grab state elements when needed

Reduce data movement

Removes hard memory limit

Vectorization of forward operator calculations
More scalable forward operator

Memory

Calculation

4 tasks doing all observations for 1 copy
More scalable forward operator

Memory

Calculation

4 tasks doing all observations for 1 copy

Lots of tasks doing some observations for all copies
Lorenz_96 forward operator

wall clock

core seconds
CAM FV forward operator
Specific humidity only : 23 090 observations

<table>
<thead>
<tr>
<th>processors</th>
<th>512</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>1.01s</td>
<td>0.96s</td>
</tr>
<tr>
<td>distributed</td>
<td>0.73s</td>
<td>0.18s</td>
</tr>
</tbody>
</table>
WRF forward operator
54, 400 observations

processors	1024	4096
state complete | 0.6s | 0.6s
distributed | 2.0s | 0.7s
Models do not run ensemble complete
Models do not run ensemble complete
Models do not run ensemble complete
IO

Models do not run ensemble complete
Models do not run ensemble complete

You have to move data from the model to DART
Ideally:

1
2
3

\[\text{Diagram with 1, 2, and 3 in a block above a three-step process.} \]
Ideally:

Never looks like this in memory
All DART requires is that there are multiple model forecasts
Multiple model forecasts to create the ensemble

IO

IO for each ensemble member

when you can start DART

Multiple model forecasts to create the ensemble
Multiple model forecasts to create the ensemble

Model run ~1000 tasks
Model run ~1000 tasks when you can start DART

Multiple model forecasts to create the ensemble
Multiple model forecasts to create the ensemble

Model run ~1000 tasks

when you can start DART
Model run ~10000 tasks

Multi-instance forecasts to create the ensemble
Should the IO speed drive the data layout?
Algorithm choice and communication

- The forward operator parallelizes
- The assimilation parallelizes
Algorithm choice and communication

- The forward operator parallelizes
- The assimilation parallelizes
- Communication does not scale
Broadcasts

\[i = 1 \]

\[
\text{do } i = 1: \text{number of observations}
\]

\[\text{1 observation} \]

\[
\text{end do}
\]
Broadcasts

\[
do \ i = 1: \text{number of observations} \\
\]

\[i = 1\]

1 owner

end do
Broadcasts

doi=1: number of observations

end do
do i = 1: number of observations

end do
Broadcasts

\[
do \ i = 1: \text{number of observations}
\]

\[
e \ = \ 3
\]

end do
Broadcasts

doi = 1:number of observations

end do

i = 4
Broadcasts

\[
\text{do } i = 1: \text{number of observations} \\
\]

\[
\text{end do} \\
\]

\[
i = 5 \\
\]
Broadcasts

do i = 1: number of observations

end do
Broadcasts

\[
do \ i = 1: \text{number of observations} \\
\text{end do}
\]

\[i = 7\]
Broadcasts

\[
do \ i = 1: \text{number of observations} \\
\text{end do}
\]

i = 8
Further Complications
Further Complications

Or, software engineering concerns
Further Complications

Or, software engineering concerns

What about all the users who are happy with DART as it is?
Further Complications

Or, software engineering concerns

What about all the users who are happy with DART as it is?

- Allow whole state to be stored if the memory is available
Further Complications

Or, software engineering concerns

What about all the users who are happy with DART as it is?

- Allow whole state to be stored if the memory is available

Does this mean a vectorized and non-vectorized version of the forward operator for each model?
Further Complications

Or, software engineering concerns

What about all the users who are happy with DART as it is?

• Allow whole state to be stored if the memory is available

• Need to remain user extensible
Further Complications

Or, software engineering concerns

What about all the users who are happy with DART as it is?

- Allow whole state to be stored if the memory is available
- Need to remain user extensible
- Backward compatible?
Further Complications

Or, software engineering concerns

What about all the users who are happy with DART as it is?

• Allow whole state to be stored if the memory is available
• Need to remain user extensible
• Backward compatible?
• Manageable code
Collaborators?

dart@ucar.edu
Learn more about DART at:

www.image.ucar.edu/DARes/DART

dart@ucar.edu

hkershaw@ucar.edu
Parallel Observation Processing
Parallel Observation Processing
Parallel Observation Processing

Uniform: 127,000 obs.

Radar: 25,000 obs.

Satellite track: 25,000 obs.

Radar: 25,000 obs.
Parallel Observation Processing

Observations that are more than 0.05 apart are independent.
Parallel Observation Processing

- Find minimum number of subsets of independent observations
- Mutual exclusion scheduling problem
- Use greedy algorithm:
 Decreasing Greedy Mutual Exclusion (DGME)
Parallel Observation Processing

Red shows observations in a given subset.

344 Observations in Color 1

91 Observations in Color 665

Irregular Observations -> Load Balance Challenges
Parallel Observation Processing

Last subsets only have a few observations each.
- These are in regions where satellite and radar overlapped.
- May be significant load balance issue.
Observations 1 December 2006

GPS

ACARS and Aircraft

Radiosondes

Sat Winds
Parallel netcdf

- Can we use this to transpose during IO?
- Simple for DART restart files
- Not simple for model restart files
Parallel netcdf

- Can we use this to transpose during IO?
- Simple for DART restart files
 - stride through a vector
- Not simple for model restart files
Parallel netcdf

- Can we use this to transpose during IO?

- Simple for DART restart files
 - stride through a vector

- Not simple for model restart files
 - can’t ignore the dimensionality of each variable
Parallel netcdf

- Can we use this to transpose during IO?
- Simple for DART restart files
 - stride through a vector
- Not simple for model restart files
 - can’t ignore the dimensionality of each variable
Parallel netcdf

• Can we use this to transpose during IO?

• Simple for DART restart files
 - stride through a vector

• Not simple for model restart files
 - can’t ignore the dimensionality of each variable

• Should the IO speed drive the assimilation data layout?
Irregular Observations -> Load Balance Challenges

Simulate performance for idealized observation set (2% of obs shown).

Uniform: 127,000 obs.

Radar: 25,000 obs.

Satellite track: 25,000 obs.
You need to run a bunch of model forecasts
Convert the model output to DART format
Do data assimilation with DART
Convert back to model input
Calculation of the Forward Operator
Calculation of the Forward Operator

grid points at each model level
Calculation of the Forward Operator

Observation – at a vertical location in pressure/height/…

grid points at each model level
Calculation of the Forward Operator

Observation – at a vertical location in pressure/height/…

grid points at each model level

The variables in the state determine the location of the observation
Observation – at a vertical location in pressure/height/…

grid points at each model level

The variables in the state determine the location of the observation

Interpolate to find the expected value of the observation
But vectorization is not perfect:

An observation can be in different model levels depending on the state.
What’s parallel about DART?
First, look at the serial version of the algorithm

observation and error variance
ensemble approximation of the observation
updates
Algorithm choice and communication
Algorithm choice and communication

Broadcast
Worst-case scenario
IO

You need to run a bunch of model forecasts write to file
You need to run a bunch of model forecasts
convert the model output to DART format
read from file
write to file
write to file
IO

You need to run a bunch of model forecasts

Convert the model output to DART format

Do data assimilation with DART

write to file

read from file

write to file

read from file

write to file
IO

You need to run a bunch of model forecasts

Convert the model output to DART format

Do data assimilation with DART

Convert back to model input
Models do not run ensemble complete

You have to move data from the model to DART
IO

- Scripting
- Queuing
- Scaling
Should the IO speed drive the data layout?
Notation
What’s parallel about DART?

observation and error variance

ensemble approximation of the observation updates
Why do we need to change anything?

Or, what’s not so parallel about DART?

• Multiple data decompositions
• IO
• Algorithm choice and communication
Limitations of having these two decompositions:

The forward operator does not scale beyond processors = ensemble members.

Users have models that are too large to fit into the memory of a single node.

You have to transpose data between decompositions.