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My pet peeve.

. A brief overview of ensemble assimilation.

. Why localization and inflation are necessary.
. Diagnosing what went right.

. Diagnosing what went wrong.

. Common mistakes.

. Some things to think about.

. Where to learn more.



"I spent the last N years developing a
method and compared it to an E*KF that
I knocked out in a day and “-WOW- my
method beat the E*KF! Its a MIRACLE! *

— <= —

| am simply tired of all the inappropriate comparisons.
| really don’t care who wins, just be fair.



At the very least : don’t compare this:

Your fully-tested, optimized final product.



Something full of unrealized potential.



Or even more disheartening:

Don’t compare
<= this to this.

It is possible to sabotage
(even unintentionally)

a method to produce
poor results.

Sadly, it happens!
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What is Data Assimilation?

Observations combined with a Model forecast...
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... to produce an analysis.

Overview article of the Data Assimilation Research Testbed (DART):

Anderson, Jeffrey, T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, A. Arellano, 2009:
The Data Assimilation Research Testbed: A Community Facility.
Bull. Amer. Meteor. Soc., 90, 1283-1296. doi:10.1175/2009BAMS2618.1




Ozone fields example

4 estimates of Ozone — all equally likely.
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

1. Use model to advance ensemble (3 members here) to time
at which next observation becomes available.

Ensemble state Ensemble state
estimate after using at time of next
previous observation observation
(analysis) (prior)
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Schematic of an Ensemble Filter for Geophysical Data Assimilation

2. Get prior ensemble sample of observation, y = h(x), by
applying forward operator h to each ensemble member.

Theory: observations
h h from instruments with

uncorrelated errors can

be done sequentially.

tk

tk+1 Houtekamer, P.L. and H.L. Mitchell, 2001:
A sequential ensemble Kalman filter for

— / atmospheric data assimilation.
Mon. Wea. Rev., 129, 123-137

% ok ok




Schematic of an Ensemble Filter for Geophysical Data Assimilation

3. Get observed value and observational error distribution
from observing system.

tk

% ok ok




Schematic of an Ensemble Filter for Geophysical Data Assimilation

4. Find the increments for the prior observation ensemble

(this is a scalar problem for uncorrelated observation errors).

Note: Difference between

various ensemble filter methods
tk is primarily in observation
increment calculation.

% ok ok




Schematic of an Ensemble Filter for Geophysical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

tk

Theory: impact of observation
increments on each state

—_ . variable can be handled
independently!

% ok ok




Schematic of an Ensemble Filter for Geophysical Data Assimilation

6. When all ensemble members for each state variable are
updated, there is a new analysis. Integrate to time of next

observation ...
—»
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tk+2
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Once is not enough!

We want to assimilate over and over to steadily make
the model states more consistent with the observations.

s I = e e ==
— > > e —
time g

| used to know what ‘coupled’ data assimilation meant.
| don’t anymore. Ditto for ‘hybrid’ methods.




A generic ensemble filter system like DART needs:

1. A way to make model forecasts.

2. A way to estimate what the observation would be — given the
model state. This is the forward observation operator — h.

—
> :
y — - < y The increments are

regressed onto as

many state

variables as you
t+1 like. If there is a
correlation, the
state gets adjusted.
The new states are
used as new initial
conditions.

b

ensemble members



Combining the Prior Estimate and Observation

P(T,\T ,C)P(T 1C)

P(TIT,.C)= -
normalization
Posterior Likelihood

50.4_ (observation),
L0
4y}
S
& 0.2

94 -2 0 2 4

Temperature

The example here shows
gaussians, not required ...

DART_LAB Section 1: 18 of 69



Matlab Hands-on: gaussian_product

Purpose: Explore the gaussian posterior that results from taking
the product of a gaussian prior and a gaussian likelihood.

000 _ X| gaussian_product 1) Set Prior Mean and
File Edit Yiew Insert Tools Desktop Window Help
/ Standard Deviation.

o A Frior 0 | 2)Set Observation
= = = Ohs. Likelihood :
‘ - Mean and Observation

I Error Standard Deviation.
Obs. Error SD <€

Plot Posterior ‘ —

035

03

025

02

3) Select Plot Posterior|to
Update the items in blue.

015+

01

005+

DART_LAB Section 1: 19 of 69



Matlab Hands-On: oned _ensemble

» Matlab GUI oned_ensemble demonstrates how the
“=*’ jncrements are calculated.

Purpose: Explore how ensemble filters update a prior ensemble.

O00 X/ oned_ensemble
File Edit Yiew Insert Tools Desktop Window Help Y 1) Change these
— — if you want to.
Prior Mean = Prior SD =

o 3) Click in here —a few times | 2) Click on

Create New Ensemble

04t Create New Ensemble J .

02t UpdaterEnsermlle

5) Click on
0 LiEhaw Inflation Update Ensemble
Inflation 1
EAKF -

2 S 0 i 2 ] 4 |
4) Click outside the axis on the f Ilgnore the Inflation and
gray (anywhere) to finish EAKF menus for now.

defining the ensemble.
DART_LAB Section 1: 20 of 69



OK —so now we have increments ...

We need to know how to use the increments.
“We regress them onto the model state.”

Time for a quick tour of
¢ DART/DART LAB/DART LAB.html

1. Concepts in 1D
2. What can the increments impact?
3. What should the increments impact?

The next slide shows some of the processes in the Community Land Model.
There are more than 200 variables at each gridpoint. What do you do?
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As if it weren’t complicated enough ...

Glacier

Lake

Models that abstract the
gridcell into a “nested gridcell
hiearchy of of multiple
landunits, snow/soil columns,
and Plant Function Types” are
particularly troublesome
when trying to convert the
model state to the expected
observation value.



As if it weren’t complicated enough ...

Location
information is
contained at this
level ONLY!

Observations
occur here!

Lake

Models that abstract the
gridcell into a “nested gridcell
hiearchy of of multiple
landunits, snow/soil columns,
and Plant Function Types” are
particularly troublesome
when trying to convert the
model state to the expected
observation value.

Given a soil temperature
observation at a specific
lat/lon, which PFT did it
come from? No way to
know! Unless obs have
more metadata!



Performance and Rejection

Initially tiny
spread and large Northern Hemisphere (20-80)
observation RADIOSONDE_TEMPERATURE @ 500 hPa

rmse pr=1.1971, po=0.98162 totalspread pr=0.91985, po=0.81559

not performing. o g
well —yet!1-8 2 1800
’
Much Better! Very 600
- few observations 1400 §
o being rejected. T
S 1.2 1200 *.
o 3
©
= o
2 1 1000 &
2 o)
= °
% 08 -G eo™ 800 8
o
€ —
0.6f 4600 «
the observation error and the ensemble variance.
0.4F - 400
02 o o | O g g g g g8 1200
z z * S: z i * 0 z 2 220 * 9 ® ® ® ® ®
| |
0
08/01 08/06 08/11 08/16

month/day — Aug.01,2005 06:00:00 start



A good-looking experiment.

Northern Hemisphere

RADIOSONDE_TEMPERATURE @ 500 hPa
rmse pr=1.1176, po=0.91808 totalspread pr=0.91241, po=0.8187
3 T T T T 2400
done vet! ——rmse
Not done yet: —e—totalspread
2.5 o R | -2000_O
000, © @ Q
9%, %0 of 9 2 ¢ @ D
8 OOO OQOOOO 3@ CP @ ? Q ‘ Q QQQ QQQQQQQQQ %)
o ol Re! , | 41600 Y}
i + 1) Observatlons not being rejected 5
£ ~ 2) RMSE, totalspread ‘leveled off’ 11200 §_
-*é 1.5 + ” 3). RMSE, totalspread compgarable. n
o ' , H ..
® ol | 2
e 1 g0 1,““11’:54 ?‘1”7 o XY 800 §
T |(22888335ReRela ettt titas s P [e)
ESS
0.5r 1400
S$+22929 QQQQEQQ®@@@@@@Q@Qee@@®®@@®@@@®@@@@@@®
O | | ] 0
08/01 08/06 08/11 08/16 08/21 08/26
month/day — Aug.01,2005 06:00:00 start

data file: /glade/scratch/raede

/SE30r4_Katrina/Diag_NoSoTrCarib_2005_8_1-23/obs_diag_output.nc



Sometimes the models are PRETTY COMPLEX

Ocean Coupl
R oup er‘_

1

‘ Land

+

>




The argument for localization ...

22—-Aug-2005 21:00:02 — 23—-Aug-2005 03:00:00
NCEP BUFR observation (12168 locations)

latitude

SAT_U_WIND_COMPONENT

0 50 100 150 200 250 300 350
longitude



Localization & Sampling Error

000 X! run_lorenz_96

File Edit Yiew Insert Tools Desktop Window Help ~

NEAS MAAODEL- S |0E D

- .
BT True State Time = 49
- B0
= - & Al r h {al

Ensemble
#  Ohservations

210

240
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DART_LAB Tutorial Section 3:

Sampling error and localization.
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Regression Sampling Error

Unobserved State Variable

-2 0 2
Observed Variable

Suppose unobserved state
variable is known to be
unrelated to observed variables.

Unobserved variable should
remain unchanged.

DART_LAB Section 3



Regression Sampling Error

Unobserved State Variable

LS

)]
O

<
Z

O

.
oW

After Obs. 1

Sample Correl. = 0.06

| e

-2 0 2
Observed Variable

Suppose unobserved state
variable is known to be
unrelated to observed variables.

Finite samples from joint
distribution have non-zero
correlation, expected

|corr| =0.19 for 20 samples.

After one observation,

unobserved variable mean and
standard deviation change.

DART_LAB Section 3



Regression Sampling Error

o 3 I\\S/IDNz—%%% After Obs. 21 ' Suppose unobserved state
§ o ¥ - variable is known to be

S [* % unrelated to observed variables.
o T3

S} - % % Unobserved mean follows a
Y * ¥ | random walk as more
o #F .

GE) _qf *O* % observations are used.

§ i Mg

o -2

D S

=

2 o
Observed Variable

DART_LAB Section 3



Regression Sampling Error

After Obs. 41 ' Suppose unobserved state
variable is known to be

* % unrelated to observed variables.
i WX e ¥
* *
* ﬂ%
*q***% * Unobserved mean follows a

z% * . random walk as more
[l % T | observations are used.
&*&*

Unobserved standard deviation
consistently decreases.

Unobserved State Variable

Sample Correl. = 0.01

< emoinans

-2 0 2
Observed Variable

DART_LAB Section 3



Regression Sampling Error

Unobserved State Variable

After Obs. 61

* kB
T .
Sk
.« iF
¥ sk ooy ¥
%R
kK

Sample Correl. =0.12

+ am—

-2 0 2
Observed Variable

Suppose unobserved state
variable is known to be
unrelated to observed variables.

Unobserved mean follows a
random walk as more

observations are used.

Unobserved standard deviation
consistently decreases.

DART_LAB Section 3



Regression Sampling Error

Unobserved State Variable

After Obs. 81

Sample Correl. = —-0.32

T
-2 0 2
Observed Variable

Suppose unobserved state
variable is known to be
unrelated to observed variables.

Unobserved mean follows a
random walk as more

observations are used.

Unobserved standard deviation
consistently decreases.

DART_LAB Section 3



Regression Sampling Error
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After Obs. 101

*

*

i&ﬁ"‘ﬁ*‘ E s *
*

* *%k %

Sample Correl. = 0.27

——

-2 0 2
Observed Variable

Suppose unobserved state
variable is known to be
unrelated to observed variables.

Unobserved mean follows a
random walk as more

observations are used.

Unobserved standard deviation
consistently decreases.

DART_LAB Section 3



Regression Sampling Error

Unobserved State Variable

- w2k

After Obs. 101

*
*
i&ﬁ"‘ﬁ*‘ E s *
*
* *%k %

Sample Correl. = 0.27

——

-2 0 2
Observed Variable

Suppose unobserved state
variable is known to be
unrelated to observed variables.

e Estimates of unobserved are
too confident.

* Give less weight to
subsequent meaningful

observations.

* Meaningful observations can
end up being ignored.

DART_LAB Section 3



Regression Sampling Error

Absolute value of expected
sample correlation vs. true

08 """""""""""""""""" correlation.

06 ------------------------------------ Errors decrease for large

: ensembles and for correlations

with absolute value close to 1.

o
~

Expected ISample Correlationl

— 10 Members
02k A — 20 Members |
— 40 Members
0 — 80 Members
0 0.5 1

DART_LAB Section 3



Regression Sampling Error

o
3]

the previous

R For small true correlations,
slide’s origin.

sampling errors are
undesirably large even for
80 members!

o
~

.......................................................................

o
W

So - the primary tool to fight

Expected ISample Correlationl

0.2p e 70 o o this is localization. Don’t let
— 10 Members observations that are known to
0.1 b Ao — 20 Members | be unrelated to model variables
— 40 Members impact those model variables.
0 ; _—— 80 Members Lots of strategies here. Physical
0 01 02 03 04 distance, chemical properties,

True Correlation geographic separation (e.g.

watersheds) ... added benefit:
computational efficiency!




So ... how do we assess performance?

1. We are trying to achieve an ensemble that is indistinguishable from the

physical realization of the modeled system. (we want our ensemble of
models to generate synthetic observations that have the same PDF as the
real observation)

We want the ensemble to be as informative as possible and still capture our
uncertainty in the system.

It is trivial to develop a method to have a terrific posterior RMSE compared
to observations. ‘Direct replacement’. This was done in the early days of
atmospheric DA and it was shown to have really poor forecast properties.

It is also possible to get a great RMSE by rejecting all the observations that
disagree with your ensemble. This is called “filter divergence’ and is the #1
undesirable property of ensemble methods.

Rank histograms can assess #1 and #2.
Observation-space diagnostics of the PRIOR can assess #3 and #4.



Rejection ... where and why?

) ( o . Figure 1 . . .
File Edit View Insert Tools Desktop Window Help ¥
NDadde h AKFXO9EL- 2 08 ad
(¥ Linked variables /expressions: obsmat(:,3) vs. obsmat(:,2) vs. obsmat(:,1) Edit... =

RADIOSONDE_TEMPERATURE
13-Aug-2005 21:00:01 ---> 14-Aug-2005 03:00:00

pressure

300

latitude

20 920 longitude

) Tim — don’t forget to run Matlab GUI link_obs




So that’s how to assess whether or not
the assimilation was effective:

1. Are the observations getting rejected?

2.
3.
4.

s the ensemble collapsing?
s the RMSE more-or-less steady?

Do the rank histograms look reasonable?



More things to think about:

time
”Spun up” \ @
| $ se
“a long time” active
nc ):realist'ic forcing for each

| trajectories.
“a long time”.

DART has tools we are using to explore how
much spread we NEED to capture the
uncertainty in the system.



The ensemble advantage.

You can represent uncertainty.

time

>

Free run / open loop
The ensemble spread |
frequently grows in a free
. . L EEe——

run of a dispersive model.

A good assimilation
reduces the ensemble spread =
and is still representative

and informative. ~——

/"

observatlon tlmes



Atmospheric Ensemble Reanalysis

__180 Assimilation uses 80
—— members of 2° FV CAM
forced by a single ocean

(Hadley+ NCEP-0I2)
\ ;50 and produces a very
A\ competitive reanalysis.

500 hPa GPH
Feb 17 2003

90w [ St ) T WS §| 90F O(1 million)
\ B - \ ' atmospheric obs
are assimilated

every day.
60W
1998-2010+
Can use these to . ~ 4x d.a|Iy is
available.

force other models.



A land model experiment at a single site.

In collaboration with Andy Fox
(NEON): An experiment at
Niwot Ridge

9.7 km east of the Continental Divide

e C-lislocated in a Subalpine Forest

 (40202'09" N; 105232'09" W; 3021 m)

* One column of Community Land Model (CLM)
e Spun up for 1500 years with site-specific information.

* 64 ensemble members

* Forcing from the DART/CAM reanalysis,

* Assimilating tower fluxes of latent heat (LE), sensible heat (H), and net

ecosystem production (NEP).
* Impacts CLM variables: LEAFC, LIVEROOTC, LIVESTEMC, DEADSTEMC,
LITR1C, LITR2C, SOIL1C, SOIL2C, SOILLIQ. ... all of these are unobserved.

This is the sort of information that needs to be disclosed!




Free Runs of CLM driven by 64 CAM reanalyses

Ecosystem Carbon
1.9 | | | | |

1000 T T T T T T T T T
o Ecosystem Nitrogen
€ gg5/
pd
(o]4)
990 — . | |
2000 2002 2004 - 2006 2008 2010



In collaboration with Andy Fox (NEON):

Focus on the ensemble means (for clarity)

N
o

Y
o

o

NEP (gC m2s™)

Net Ecosystem
Production

Sensible heat

Latent heat

25 June
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Effect on short-term forecast on unobserved variables.

. Leaf Area

2.05

Free Run
Assim
Forecast

o
S
U 2
B0

1.95

994
o
£ 992
=z
oo 990

Ecosystem Nitrogen

988 ' '
April May June Jul August September
2004



Effect on longer-term forecast

Leaf Area Index
2 | | | | | | | | |

.+ Again, these are model variables.

2-1 T T T T T T




Assimilation of MODIS snow cover fraction

80 member ensemble for onset of NH winter, assimilate once per day
 Level 3 MODIS product — regridded to a daily 1 degree grid

* Observations can impact state variables within 200km

 CLM variable to be updated is the snow water equivalent “ "
* Analogous to precipitation ...

goN 1 1 l 1 1 l 1 1 l 1 1 ' 1 1 I 1 1 I 1 1 ' 1 1 l 1 1 l 1 1 l 1 1 I 1 1

Standard
deviation of the
CLM snow cover

fraction initial
conditions for

Oct. 2002

gOS T T l T T l T T l T T l T T I T
0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W

T l T T l T T l T T I T T l T T l T

0.02 0.04 0.08 0.12

0.01 0.18 0.24 0.3



An early result: assimilation of MODIS

on total in CLM.

PRIOR: ensemble mean H2OSNO for 30-Nov-2002
T T T T

Thanks Yongfei!

ensemble mean H2OSNQO innovations (prior-poste) for 30-Nov-2002
T T T T

~
0 50 100 150 200 250 300 (1]e)
\
ensemble mean H2OSNO innovatiol (p r-poste) for 30-Nov-2002 3
T
a0 N
60
! [N -.hl'
201
ok

201 Focus on the non-zero increments L,
< asonable places, by reasonable

-60[

-80

0 50 100 150 200 250 300 350



The HARD part:

What do we do when SOME (or none!)
of the ensembles have [snow,leaves,precipitation, ...]
and the observations indicate otherwise?

Corn Snow? Sugar Snow? Wet Snow?
New Snow? Dry Snow?

“Champagne Powder”? Crusty Snow?

?
Slushy Snow- Old Snow?
Dirty Snow?

?
Early Season Snow? Packed Snow:

DISORIENTED ¥

Snow Density? Snow Albedo?

The ensemble must have some uncertainty, it
Y cannot use the same value for all. The model
- - expert must provide guidance. It’s even worse
for the hundreds of carbon-based quantities!




Ocean Considerations

Alicia R. Karspeck, Steve Yeager, Gokhan Danabasoglu, Tim
Hoar, Nancy Collins, Kevin Raeder, Jeffrey Anderson, and
Joseph Tribbia, 2013: An Ensemble Adjustment Kalman Filter
for the CCSM4 Ocean Component. J. Climate, 26, 7392-7413.
doi: http://dx.doi.org/10.1175/JCLI-D-12-00402.1

The 2005 average temperature
increment for the POP-DART ocean
data assimilation in the equatorial
Pacific (2.5S to 2.5N) for 1-day
assimilation cycles. This represents a
tilting and sharpening of the
equatorial thermocline.

50

100

- q9.01

150

200 |, Regional models have to consider

Boundary conditions.

Buoyancy effects from observations not in
‘profiles’

Model states that cannot be numerically
supported — sharp boundary currents!

2501

300 | | 1 1 1 1 1 1 I
140E 160E 180E 200E 220E 240E 260E




Diagnhostics — Ocean Example

FLOAT_TEMPERATURE @ 100 m

Indian Ocean
(]
01/05 01/10 01/15 01/20 01/25 01/30 02/ b
2 o . . 5o %0 B _
—©— analysis: mean=0.22091 .LU C
= quess: mean=0.53198 T © g
@ B | - [ &3
_Q -c @ +‘ (7, _>
£ 9 i ST
O - T 1500 & 5 3
° ® O
wn QO S S ®
cCwm -
Q - °© @
© 0 (o)
0 *= Q
€ o2
0 o 1o g 0 5 <
01/05 01/10 01/15 01/20 01/25 01/30 02/04 +
month/day - Jan.07,2000 00:00:00 start
01/05 01/10 01/15 01/20 01/25 01/30 02/
‘I R T T T 3 o ] qA&)OO
. =——@=— analysis: mean=0.8756
351 = guess: mean=1.6253 875 b
i ‘ o @
3 . 4 ‘ 750 i
L 25F- , : -
‘é’ ol May help explain why
&~ 1sf analysis is not as good as it
1 g could be.
o ‘
05 ‘ ¥ T 009 | i125
01/05 01/10 01/15 01/20 01/25 01/30 02/04

month/day — Jan.07,2000 00:00:00 start



Key Questions for Ensemble DA:

What parts of the model ‘state’ do we update?

What is a proper initial ensemble?

Is an ensemble of boundary conditions necessary?

Localization considerations

How many ensemble members are needed to mitigate regression error?

What is the proper observation error specification? It is not just instrument error
but also mismatch in representativeness.

Can models tolerate new assimilated states? Silently fail? Violently fail?
Snow (vegetation) ... depths, layers, characteristics, content.
Forward observation operators
— Many observations are over timescales or are quantities that are inconvenient

Bounded quantities? When all ensembles have identical values the observations
cannot have any effect with the current algorithms.



Climate Modeler’s Commandments

by John Kutzbach (Univ. of Wisconsin).

1. ‘Thou shalt not worship the climate model.

@ N N AW

9.

Thou shalt not worsﬁg’p the climate model, but thou shalt honor the climate modeler, that it migﬁt be-
Well with thee.
Thou shalt use the model that is most a}o}orcyamate fov ,(\ ion at hand.

Thou shalt not cﬁange more than one tﬁmg ar ST,
In maﬁmg sensitivity experiments, tﬁou (% nodel hard enougﬁ to make it notice You.
Thou shalt not covet ﬁne -scale res Larse-scale model.

‘fﬁou Sﬁaﬁ,'fO[TOW tﬁe TM[EZS /«\' e wgtmg anafrememﬁer tﬁe modé[s mﬁerent vamaﬁlﬁty
Tﬁou sﬁa[t ETLOW tﬁe m0dét % cmc[ 1"6?1’161’1’1661" tﬁat T’HOO{Q[ Emses may [eacf to Emseaf sensmw%
estimates.

Tﬁou sﬁaft run tﬁe same expemment Wlfﬁ cfﬁ(erent mocﬁe[& ancf COT’VL}?CH’@ tﬁe resu[ts

10.Thou shalt worship good observations of the spatial and temporal,

behavior of the earth system. Good models follow such observations.

One go(dén observation is worth a thousand simulations.
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San Diego is very nice, but ...




Everything after here held in reserve.



Looking at it another way:
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Looking at it another way:
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Looking at it another way:

100

In our assimilations, we

typically use orde

3 1S NOT ENOUGH!
Regression Error!

Least-squares fit

Now, we can calculate out observation
increments any way we want.




Looking at it another way:

Anderson, J.L., 2003:
A local least squares

100 ¢
framework for ensemble
filtering. Mon. Wea. %0 r
Rev., 131, 634-642 80
70 1

c) Which means 60 |
the unobserved 55 |
Posterior should

be: ﬂ‘lgg

20

10 r

The plane defining the
relationship between the
observation and the model -

as defined by the
ensemble.

b) which projects

a) The “observation”

4 5 6 7 8 9 10
observation

Posterior for member 1



Looking at it another way:

The plane defining the
relationship between the

Any part of the model:
snow cover fraction,
root carbon,

canopy water ...

Could even be a model
parameter!

1007 observation and the model —
W07 as defined by the
80 ensemble.

observation
Could be Soil Temperature

10



Potential Problem

This posterior 100

MAY or MAY NOT 90

be realistic! ﬂ @,
0 a8

GOL
Can the 50
model
tolerate this
new state?

5 6 7 8 9 10
observation

If the observation is “too far” away, it is rejected.
What is “too far”?



NOAH-DART: Integrated Soil Moisture

Daily Averages
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* 80 realizations/members

 Model states are self-consistent
 Model states consistent with obs

* Available every 6 hours for 12+ years

* Relatively low spatial resolution has
implications for regional applications.
* Suboptimal precipitation characteristics.
* Available every 6 hours
* higher frequency available if needed.
Only have 12 years ... enough?

I’'m not going to prove it here, but | believe having
an ensemble of forcing data is crucial
to land/ocean data assimilation.
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Assimilation Results
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e Assimilation of eddy covariance fluxes & MODIS LAI data and CLM upscale NEE
from plot to catchment scale
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NOAH-DART: Integrated Soil Moisture

Daily Averages
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Future Work: AKA “What | didn’t talk about.”

v
v
v
v
v
v
v

Improved observation metadata / peculiar land model hierarchies ...
Snow ... destroying is easy, making ‘brand new’ snow is hard ...
Forcing files/data for the resolutions desired ...

Forward observation operators in support of the instruments ...
Supporting non-local localizations ( eg. watersheds ) ...

The initial ensemble & spread ...

Identifying model variables that NEED to be updated ...

And a whole lot more ...



