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The ingredients for a challenging problem: 

Systematic biases 

Unresolved 
processes 

 

 

 

Sparse 

Inhomogeneous 

Changing in time 

Linear/Gaussian 
assumption  

Misspecified error 
characteristics 

Undersampling (small 
number of samples, for 

large state-space) 

4DVar – cannot perfectly 
find  the  minimum 
(adjoint imperfect, 
costly iterations) 

OBSERVATIONS A SUBOPTIMAL 
DA METHOD 

AN IMPERFECT  
OCEAN MODEL 

The ocean has A LONG MEMORY 
over which to convolve these 

problems!  



What do most global ocean 
assimilation systems look like? 

Global (horizontal and vertical) 
discretization of equations 
describing the time evolution of 
the ocean “state:”  
* temp (x,y,z,t), 
* salinity(x,y,z,t) 
* currents(x,y,z,t) 
* SSH(x,y,t) 
(+ other tracers) 

Prescribed atmospheric boundary 
conditions  
(“forced ocean model”) 



What do most global ocean 
assimilation systems look like? 

Typical resolution is  from  
¼ to 1 degree (25 to 100 km)* 
 
Size of the state ~ 1e7 

~1/10 degree 

~1 degree 



What do we use to constrain our 
ocean models? 

�  In-situ* subsurface temperature and salinity 
 -sparse in space, time, but relatively long historical record (~1940’s forward) 

 
�  Sea surface height derived from satellite altimetry 

 -dense in time/space, but only available since mid-1990’s;  
 -An integrated measure of density (no unique mapping from SSH to T/S in the water 
 column) 

 
�  Sea surface temperature products  

 -From a combination of surface in-situ and satellite observation 
 -Long records, but they are typically analyzed products and (by definition) represent  
 only  the temperature at the interface. 

 
�  Atmospheric forcing product (not assimilated, but implicitly providing 

a strong constraint on the system) 
 
 
 
 

* Literally “in position” 



Why do we do  
global ocean data assimilation? 

�  Climate analysis (60+ years in length)  
�  Want to generate a historical record of the ocean 

�  e.g.: “Has the ocean warmed in the last 50 years?” 
�  Want to understand physical processes  

�  Climate forecasting  
�  Seasonal, interannual and decadal prediction are thought to be  

initial value problems that depend on the state of the ocean  

�  Model improvement 
�  Using DA increments to diagnose and understand(?) the biases in 

our ocean models 

�  Assessment of the global observing system 
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Number of in-situ hydrographic observations: 
 temperature and salinity 

-Number of observations varies dramatically with time/depth/location 

-The deep ocean is by and large unconstrained in the past, in the 
present, and for the foreseeable future. 

“Argo profiles” 



In-situ hydrographic observations 

Number of observations varies wildly with time/depth/location 

TEMP-SURFACE 1960’s TEMP-SURFACE present 

SALINITY-SURFACE 1960’s SALINITY-SURFACE present 



In-situ hydrographic observations 

Big changes from the 1990s to the present at mid-depths due in large part to Argo 

TEMP-1700m 1980’s/1990’s TEMP-1700 m present 

TEMP-3000 m present TEMP-3000 m 1980’s/1990’s 



A fundamental challenge: 
The dynamics of the ocean depend on the density distribution.  
Density is a (non-linear) function of temperature and salinity:        

Hydrographic measurements of T,S are not always co-located à 

 The dynamics of the model are extremely sensitive to the prescribed 
or modeled prior covariance between T and S 

 

At best, misspecification can lead to spurious currents… 

Thermal wind 



 
 
A fundamental challenge: 
Worse, density inversions, 
spurious convection and 
numerical failure of the 
model (“blow up”) 

[… a vivid reminder that 
the ocean is non-linear/
non-Gaussian] 

From Thacker et al 2007 (example from the Gulf of Mexico) 

Density 
inversions will 
lead to 
convection 



 SSH from altimetry 

Pro:  Very dense, high-
resolution data source 

Con: contains the geoid*, which 
models do not have and which 
is poorly known. 

*Geoid: The equipotential surface of 
the earth’s gravity field, i.e. “the 
surface of the ocean under the 
influence of gravity alone”  



Another fundamental challenge: 
There is no unique distribution of T/S over the 
water column for an observation of sea level. 
 
 
 
 
 
 
 
 
 
 
Thus, the incremental adjustment in T/S due to 
altimetry information is sensitive to the modeled 
or prescribed relationship between SSH, T, S. 
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Imperfect models – systematic bias 
“… all models are wrong, but some are useful”  
      George Box, Statistician 
 

Ocean models have very strong systematic biases 



systematic bias –>  
systematic increments in the DA scheme 
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Example from the POP1x1 global ocean model with EaKF assimilation 

[obs – model, no assimilation] 

[posterior-prior, 1 day forecast] 



systematic bias –> 
systematic increments in the DA scheme 
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Consequences of systematic increments in the 
 DA scheme 

This idea was first considered by Burgers et al 2002, Bell et al 2002,2004.    

DA increment the density so as to sharpen and 
steepen the slope of the thermocline 
 
 
 Development of spurious vertical velocity 
during forecast as the thermocline slumps back 
to its preferred position. 
 
Why?  The systematic bias (due to incorrect 
wind strength, poor mixing, etc) re-emerges 
rapidly.  DA only fixes the symptom. 

From Balmaseda et al 2007 

Increments in temperature Resultant vertical velocity 

Equatorial Thermocline 

z 

x 

DA: extract heat 

Forecast: adjust via 
downward velocity 



  
Consequences of systematic increments in the 
 DA scheme 

Heat budget in the equatorial Atlantic 

Plots from S. Karol 

  
Heat budget will not 

close without 
accounting for the 

heat sources or 
sinks 

PW 

In this example, the systematic extraction 
of heat by the DA system changes the heat 
budget, increasing the net import of heat 

across the southern boundary 



What happens when you mix a biased 
model with a changing observing system? 

+ When a model is biased, it will drift away from observations 
+ The amount of drift (in time and space)will be impacted by the     
changing observing system. 
+ The climate is also changing, how to disentangle the imprint of the 
observing system and real change in the climate system?    

From Balmaseda et al 2013 The CESM model drifting over 1400 years  

Blue: forced ocean model 
Red: DA but no bias correction 
Black: DA and bias correction 

Argo? 



	


	


	


	



Decadal 
Prediction 

CORE-II 

Surface temperature in the North Atlantic 
systematically cooling during the decade of prediction 

What happens when you use a biased 
model for forecasting? 

An example of “drift” in the  
NCAR CESM model 



Why does model bias matter? 

�  Violates the basic assumptions of most DA methods 
… how to address this is an area of active research 

�  Can result in systematic increments to the model state if the bias 
emerge faster than the frequency of assimilation. (impact on 
budgets, circulation) 

�  Can interact with observing system to produce a non-stationary 
climate and drifting model forecasts. 

What is done about it? 
•  Sometimes nothing! 

•  Extend the state vector to include a bias term (Dee and da Silva 

1998, Bell et al 2000) Estimate it! 

•  Try to correct it by altering the model dynamics (see Balmaseda et 

al 2013).  e.g. pressure correction. 

•  Heuristic “nudge/relaxation” to a observed climatology       (+ more) 
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Representativeness error accounts for processes that are detectable through 
observation, but not resolvable by the model 

•  It is model dependent 
•  It is geographically variable (spatially inhomogeneous) 
•  In a 1° ocean model rep-error can be an order of magnitude larger than 

instrumental error in some regions 

Imperfect models – unresolved processes 
“… all models are wrong, but some are useful”  
      George Box, Statistician 
 



Representativeness error is typically treated as observational error 
(i.e. it is included in R)* 

Kalman gain: K = B HT (HBHT + R)-1 

Imperfect models – unresolved processes 

*Sometimes it is included in B!  Which indicates a desire to estimate the unresolved processes* 
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Example of representativeness error in 
the POP1x1 model 

Assimilation will try to shift Kuroshio to the 
south… and assimilate eddies 

Need picture here of the 
real Kuroshio current. 

Oceanservice.noaa.gov 



      

 

 

 

 

 

 

 
      

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 
      

 

 

 

 

 

 

 
      

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

time = 10days time = 20days time = 30days 

time = 40days time = 50days time = 60days 

 
  

Consequence of naively assimilating without treating  
representativeness error in a  

1 degree ocean model 



Estimates of representativeness error for 
POP1x1 
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Estimates of representativeness error for 
POP1x1 
 

Karspeck 2015 (MWR in review) 
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The fact of model imperfection raises 
basic question about the goal of data 

assimilation 

Are we seeking to constrain the model within 
its imperfect, but self-consistent, attractor? 

 (For forecasting this is sensible)  

Are we seeking to draw the model into some 
alternative phase space that looks more like 

reality?  
(For state estimation this might be sensible)  



For all these reasons (and more) the set of 
commonly used ocean data assimilation 

products show inconsistent representations of 
the ocean over the last fifty years. 

Consider the circulation in the Atlantic 



x 
x 

Atlantic Meridional Overturning Circulation 



Groups that have contributed AMOC reanalyses 
from 1960 – 2007 (or longer)  

GROUP METHOD INSITU 
T/S ALT SST 

NoAssim 
Control 

run? 

Atm 
forcing 

DP  
INIT? 

GECCO2 
(U. Hamburg) 4DVAR YES YES YES YES [NCEP]* YES 

ORAS4 
(ECMWF) 

NEMOVAR  
3DVar YES YES YES YES ERA-40/

ERA-I YES 

MOVE-CORE  
(MRI) 3DVar YES NO NO YES CORE II 

IAF [NO] 

SODA 
(U.Marylnd/
TAMU) 

OI YES NO YES YES 20-CR YES 

DePreSys  
(UKMET) 

Coupled 
nudging 

to OI 
product  

YES NO YES NO N/A YES 

ECDA3.2 
(GFDL) 

coupled 
EaKF YES INDIRECTLY YES NO  

[NCEP]* YES 



AMOC time mean (1961-2007) 

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
GECCO2

de
pt

h 
(k

m
)

de
pt

h 
(k

m
)

de
pt

h 
(k

m
)

 

 

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
ORAS4

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
NCAR−CORE

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
MOVE−CORE

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
SODA

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
DEPRESYS

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
ECDA

Sv
−10 0 10 20

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
GECCO2

de
pt

h 
(k

m
)

de
pt

h 
(k

m
)

de
pt

h 
(k

m
)

 

 

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
ORAS4

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
NCAR−CORE

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
MOVE−CORE

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
SODA

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
DEPRESYS

20°S 0° 20°N 40°N 60°N

5

4

3

2

1

0
ECDA

Sv
−10 0 10 20

Karspeck et al (2015)  



AMOC variance [std] (1961-2007) 
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Areas where you can make a 
difference 

�  Improve ocean models! 
�  Can the confrontation of models with data (via data assimilation) 

lead to better models? How do we do this?   

�  Work on how best to have imperfect models interact with 
data. 

�  Model bias in data assimilation 
�  Better characterization of the variance/covariance statistics of the 

unresolved process 

�  Joint/multivariate prior distributions (e.g. covariances) 
�  How does information from one variable impact others              

(e.g. SSH à T,S) 

�  Description and use of “errors of representation” in DA 
schemes 

�  “Less approximate” Bayesian methods that can scale to large 
dimension.  
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POPDARTv2: Counter circulation gone 
with new filter initial conditions  
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Version 1 Version 2 

Atlantic MOC in the first year after initialization of ensemble 
filter 

New filter initial conditions was successful 
in reducing the counter-circulation. 

old initial conditions new initial conditions 


