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Motivation /outline

Motivation for land data assimilation:

» Improve land surface state estimates for use in weather prediction,
seasonal prediction, run-off to ocean, flood forecasts, agriculture,
drought monitoring, water/energy/carbon accounting, ...

Presentation outline:
» Land surface models and remotely sensed observations

» Examples of land data assimilation from NASA GMAO
(near-surface soil moisture, terrestrial water storage, land skin
temperature)

» Challenges / opportunities
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Global land surface models
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» Land surface models are
strongly non-linear, and
non-differentiable (no adjoint for
variational assimilation)

» Ensemble methods are well
suited to solving land data
assimilation

Drainage

c/o NASA Hydrological Sciences Branch
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Global land surface models

Spatial resolution: O(10km) for
global models

Vertical resolution: 1lcm - 1m
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Assimilated remotely sensed land observations

» Near-surface soil moisture
passive microwave: AMSR-E, SMOS, SMAP
active microwave: ERS, ASCAT, SMAP

» Land surface temperature
TIR/Vis: Geostat., MODIS

» Snow cover fraction
Vis.: MODIS, VIIRS

> Snow water equivalent
passive microwave: AMSR-E

> Vegetation
Vis: MODIS, AVHRR

> Terrestrial water storage
change in gravity: GRACE
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Assimilated remotely sensed land observations

SMOS 12 Apr 2015

» Usually assimilate retrieved [brightness temperature.
geophysical variables o1
» Vertical support: often a shallow Toros (Top-Of-Atmosphere)

Atmospheric contributions

surface layer L N
Tbyor (Top-Of-Vegetation)

» Temporal resolution: polar-orbiters:
1-3 days, geostationary: sub-daily

» Spatial resolution: microwave O(10's

. soil temperature
km), Vis O(1 km)

vegetation water and
temperature

c/o G. De Lannoy

clara.draper@nasa.gov



Comparing observed and forecast estimates

Difference in variance: 3 soil moisture estimates

» Large systematic differences in mean and se: 3s0
variance of observations and forecasts s 5

30

» For many variables, the true values are
unknown

» Differences due to:

» Errors in obs. and/or forecast
» Differences in the variable defined by
each (representativity differences)

leFerence in means: Geostat GEOS-5 monthly mean Ty, [K]
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Model-specific nature of soil moisture

» The mean and variance of can soil moisture varies dramatically
between different models, but temporal behavior is often in better
agreement

Soil wetness index for 7 GSWP-2 models [-]

1886 1987 18988 1889 1980 1981 1982 1983 1994 1995
Koster et al, 2009 (J. Clim)

In terms of assimilation:

» Forcing a model away from it's preferred climatology toward the
observed climatology can cause inconsistencies, seriously degrade
forecasts

» The usable information in remotely sensed observations is the
temporal behavior
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Assimilation of near-surface soil moisture observations

» Passive microwave: AMSR-E, LPRM X-band retrievals
(38 km resolution, depth < lcm)

» Active microwave: ASCAT C-band retrievals
(25 km resolution, ~ lcm depth)

» Assimilate into Catchment model at 0.25°, from Jan. 2007 - May
2010

» Use GMAO offline 1-D EnKF, update near-surface and root-zone
soil moisture

» Remove systematic differences between observations and f'casts
by rescaling the obs. to match the CDF of the f'casts (Reichle
and Koster, 2004 (GRL))

» Bias-blind assimilation of temporal anomalies

Draper et al, 2012 (GRL)
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Assimilation skill by land cover class

> Evaluate against in situ observations from SCAN/SNOTEL (US) and
Murrumbidgee Soil Moisture Monitoring Networks (Aus), using
correlation of anomalies from the seasonal cycle (R)

Mean R with 95% confidence intervals: root-zone

Mean R with 95% confidence intervals: surface
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Draper et al, 2012 (GRL). See also Reichle et al, 2007 (JGR), Crow et al, 2011 (WRR), Liu et al, 2011, (J. Hydromet)
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Contribution of observation skill to assimilation skill

Open-loop skill (R) (surface)

Open-loop skill (R) (surface)
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» Based on assimilation of
ASCAT or AMSR-E

» If (obs skill — open-loop
skill) > —0.2, assimilation
improved the model skill

Draper et al, 2012 (GRL)




Specifying obs. error variance at continental scales

Triple colocation

fRMSE = Root Mean Square Errors, normalized by stdev.

b) AMSR-E fRMSE©

1.Solve simple error model:

04 = Oz(@ + EA) .
0 =0+ ¢€r) |
Oc = (0 + ec) ’

+ve: gives relative errors between estimates
-ve: assumptions frequently violated, needs large sample of 3 ind. estimates

Error Propagation

fRMSE = Root Mean Square Errors, normalized by stdev.

) AMSHLE mASES”

2. Propagate expected measurement &
parameter errors through retrieval model

+ve: temporally varying error estimates

-ve: assumes retrieval model structure is
values
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Specifying obs. error variance at continental scales

B fRMSE_TC

O fRMSE_EP

a) ASCAT fRMSE

CRP wsv CRN ENF
b) AMSR-E fRMSE
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» Using triple colocation errors in

observation error covariance
matrix for assimilation of
ASCAT and AMSR-E soil
moisture gives small
improvements in assim. output

Both methods perhaps most
valuable for identifying regions
with very large errors

Neither accounts for
representativity error (can be
substantial for land DA)

Draper et al, 2013 (RSE)
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L-band soil moisture from SMOS and SMAP
SMAP 12 Aplf 2915 -

Py (P4 ‘4“%“‘.’"‘*~
» NASA’s SMAP, launched Jan. : i% s 2N
2015, 3-40 km, passive o b A
radiometer + active radar* Ej { “;
» ESA’s SMOS, launched Nov. G

200.9, 40 km resolution, passive SMOS 12 Apr 2015
radiometer Rl Lo

» Both observe at L-band (1.4
GHz)

» Ideal for soil moisture sensing,
observed 5 cm layer

c/o Gabrielle De Lannoy, Rolf Reichle
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Level 4 SMAP root-zone soil moisture (G. De Lannoy)

SMAP Tby - model Tby [K]
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Improving flux forecasts with soil moisture assimilation
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July 2006 mean daily O-F: open loop (black), assim. of 2m vars. (black,

dashed), AMSR-E SM (gray), and both (gray, dashed).
Draper et al, 2010 (JGR)

See also Seuffert et al, 2004 (J. Hydromet), Dharssi et al, 2011 (HESS) , de Rosnay et al, 2012 (QJRMS)
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Assimilation of GRACE TWS (M. Girotto)

» GRACE measures the ¢
. . [mm] y* (i.e. assimilated GRACE-TWS)
between twin satellites 1000 () g "

. . F .
gravity anomalies 2
» Terrestrial Water Stora 800
(TWS) anomalies then
from the gravity anom: 600
» Observation is change
monthly mean TWS, a 400
~basin-scale horizonta
resolution (330 km at « 200

+ve: observation over full
-ve: temporally and spatially coarse

clara.draper@nasa.gov

LDAS overview, Frontiers in Ensemble DA, 6 Aug, 5, NCAR, Boulder,



Assimilation of GRACE TWS (M. Girotto)

March 2011, mean increments

> Assimilate (JPL 1° ) GRACE observations into
Catchment LSM at 36 km resolution, with an
EnKF filter (localization radius 3°)

> Linearly rescale ATWS obs. into
Catchment-specific TWS using the Catchment
climatology

» GRACE assimilation improves model
groundwater, but not root-zone or near-surface
soil moisture

> Assimilate together with near-surface soil
moisture observations
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Assimilation of geostationary land T,
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» Reported hourly (clear-sky) at 0.25° resolution
» GOES-E, GOES-W, Meteosat-9, MTSAT-2, FengYun-2E
» Observation of the TIR clear-sky effective radiative temperature
of the land surface
» Catchment equivalent, Tg,,r, is the average temperature of the
canopy and soil surface for an arbitrarily thin layer with minimal
heat capacity
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Assimilation of geostationary land T,

» Use a bias-aware assimilation with model bias correction
» Update model T,r towards mean geostationary observed Ty
(assuming latter is unbiased!)
» Use a two-stage EnKF to estimate forecast biases from the O-F
> Assimilate the geostationary Tg, into the GEOS-5 atmospheric
assimilation and modeling system
» Use weakly coupled LDAS and ADAS system, GEOS-5 LA-DAS

» Motivation:

> Improve modeled low level atmosphere
» Improve background T, for assimilation of land-sensitive
atmospheric observation
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LDAS with forecast bias correction
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See also Reichle et al, 2010 ( J. Hydromet.), Bosilovich et al, 2007 (J. Met. Soc. Japan)
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Evaluation against NCDC T,,, station observations

1-14 August mean O-F Ty, [K]

ADAS, 21 UTC ADAS, 9 UTC
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Improvements in nighttime T, biases

T2m bias from NCDC stations, North America (799 stns)

NCDC - Model T2m [K]
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» V. little impact during the day (and possible negative

consequences)
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» Currently testing changes to GEOS-5 T, formulation



Summary

» Land assimilation is v. different to atmospheric assimilation (no
adjoint, models have no horizontal flow, damped physics, often no
recognized ‘truth’ for anchoring observed and forecast biases)

» Global to continental-scale assimilation has often been uni-variate
in offline (land only) systems, strong focus on soil moisture (also
land surface temperature, TWS, snow cover, snow depth)

» Can improve unobserved variables (root-zone soil moisture from

near-surface soil moisture), downscale information from coarse
observations (TWS components at finer resolution from GRACE)
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Future challenges

» Multi-variate assimilation
» Assimilation in coupled systems

» Consistent improvements to dependent flux forecasts (LH, SH,
runoff)

» Direct assimilation of satellite radiance and backscatter
» Specification of error variances, evaluation of assimilation output

» Handling of systematic differences in observation and forecasts
(within assimilation, diagnosing causes)

» Assimilation of new observations (SMAP freeze-thaw), with new
models (global dynamic vegetation)
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Thank you for listening




