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Motivation/outline

Motivation for land data assimilation:

◮ Improve land surface state estimates for use in weather prediction,
seasonal prediction, run-off to ocean, flood forecasts, agriculture,
drought monitoring, water/energy/carbon accounting, ...

Presentation outline:

◮ Land surface models and remotely sensed observations

◮ Examples of land data assimilation from NASA GMAO
(near-surface soil moisture, terrestrial water storage, land skin
temperature)

◮ Challenges / opportunities
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Global land surface models

c/o NASA Hydrological Sciences Branch

◮ Land surface models are
strongly non-linear, and
non-differentiable (no adjoint for
variational assimilation)

◮ Ensemble methods are well
suited to solving land data
assimilation
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Global land surface models

Vertical resolution: 1cm - 1m

dTsurf

dt
= 1

shc
(RN − LH − SH −G)

Diffusive

heat flux

b’ween

soil layers

RN LH + SH

Tsurf

G

Spatial resolution: O(10km) for
global models

◮ Each grid cell is modeled independently (no sub-surface horizontal
flow)

clara.draper@nasa.gov

LDAS overview, Frontiers in Ensemble DA, 6 Aug, 2015, NCAR, Boulder, CO. 4 / 27



Assimilated remotely sensed land observations

◮ Near-surface soil moisture
passive microwave: AMSR-E, SMOS, SMAP
active microwave: ERS, ASCAT, SMAP

◮ Land surface temperature
TIR/Vis: Geostat., MODIS

◮ Snow cover fraction
Vis.: MODIS, VIIRS

◮ Snow water equivalent
passive microwave: AMSR-E

◮ Vegetation
Vis: MODIS, AVHRR

◮ Terrestrial water storage
change in gravity: GRACE

◮ ...
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Assimilated remotely sensed land observations

◮ Usually assimilate retrieved
geophysical variables

◮ Vertical support: often a shallow
surface layer

◮ Temporal resolution: polar-orbiters:
1-3 days, geostationary: sub-daily

◮ Spatial resolution: microwave O(10’s
km), Vis O(1 km)

c/o G. De Lannoy
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Comparing observed and forecast estimates

◮ Large systematic differences in mean and
variance of observations and forecasts

◮ For many variables, the true values are
unknown

◮ Differences due to:

◮ Errors in obs. and/or forecast
◮ Differences in the variable defined by

each (representativity differences)

Difference in means: Geostat.- GEOS-5 monthly mean Tskin [K]

Difference in variance: 3 soil moisture estimates
a) σASCAT

c) σAMSR−E

e) σCAT CH
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Model-specific nature of soil moisture
◮ The mean and variance of can soil moisture varies dramatically

between different models, but temporal behavior is often in better
agreement

Soil wetness index for 7 GSWP-2 models [-]

Koster et al, 2009 (J. Clim)

In terms of assimilation:
◮ Forcing a model away from it’s preferred climatology toward the

observed climatology can cause inconsistencies, seriously degrade
forecasts

◮ The usable information in remotely sensed observations is the
temporal behavior
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Assimilation of near-surface soil moisture observations

◮ Passive microwave: AMSR-E, LPRM X-band retrievals
(38 km resolution, depth < 1cm)

◮ Active microwave: ASCAT C-band retrievals
(25 km resolution, ∼ 1cm depth)

◮ Assimilate into Catchment model at 0.25◦, from Jan. 2007 - May
2010

◮ Use GMAO offline 1-D EnKF, update near-surface and root-zone
soil moisture

◮ Remove systematic differences between observations and f’casts
by rescaling the obs. to match the CDF of the f’casts (Reichle
and Koster, 2004 (GRL))

◮ Bias-blind assimilation of temporal anomalies

Draper et al, 2012 (GRL)
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Assimilation skill by land cover class

◮ Evaluate against in situ observations from SCAN/SNOTEL (US) and
Murrumbidgee Soil Moisture Monitoring Networks (Aus), using
correlation of anomalies from the seasonal cycle (R)
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Draper et al, 2012 (GRL). See also Reichle et al, 2007 (JGR), Crow et al, 2011 (WRR), Liu et al, 2011, (J. Hydromet), ...
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Contribution of observation skill to assimilation skill
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◮ Based on assimilation of
ASCAT or AMSR-E

◮ If (obs skill − open-loop
skill) > −0.2, assimilation
improved the model skill

Draper et al, 2012 (GRL)

clara.draper@nasa.gov

LDAS overview, Frontiers in Ensemble DA, 6 Aug, 2015, NCAR, Boulder, CO. 11 / 27



Specifying obs. error variance at continental scales

Triple colocation

1.Solve simple error model:
θA = α(θ + ǫA)
θL = λ(θ + ǫL)
θC = γ(θ + ǫC )

fRMSE = Root Mean Square Errors, normalized by stdev.
a) ASCAT fRMSETC b) AMSR-E fRMSETC

EP EP

+ve: gives relative errors between estimates
-ve: assumptions frequently violated, needs large sample of 3 ind. estimates

Error Propagation

2. Propagate expected measurement &
parameter errors through retrieval model

fRMSE = Root Mean Square Errors, normalized by stdev.
c) ASCAT fRMSEEP d) AMSR-E fRMSEEP

+ve: temporally varying error estimates

-ve: assumes retrieval model structure is correct, little confidence in absolute

values

Draper et al, 2013 (RSE)clara.draper@nasa.gov
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Specifying obs. error variance at continental scales
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◮ Using triple colocation errors in
observation error covariance
matrix for assimilation of
ASCAT and AMSR-E soil
moisture gives small
improvements in assim. output

◮ Both methods perhaps most
valuable for identifying regions
with very large errors

◮ Neither accounts for
representativity error (can be
substantial for land DA)

Draper et al, 2013 (RSE)
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L-band soil moisture from SMOS and SMAP

◮ NASA’s SMAP, launched Jan.
2015, 3-40 km, passive
radiometer + active radar*

◮ ESA’s SMOS, launched Nov.
2009, 40 km resolution, passive
radiometer

◮ Both observe at L-band (1.4
GHz)

◮ Ideal for soil moisture sensing,
observed 5 cm layer

c/o Gabrielle De Lannoy, Rolf Reichle
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Level 4 SMAP root-zone soil moisture (G. De Lannoy)

◮ EnKF direct assimilation of brightness
temperature

◮ RTM calibrated to remove systematic differences
between obs. and f’casts
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Improving flux forecasts with soil moisture assimilation

◮ Near-surface soil moisture
assimilation has been
shown to improve
root-zone soil moisture

◮ Improvements to
subsequent flux forecasts
(run-off, LH, SH) has
been more elusive
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July 2006 mean daily O-F: open loop (black), assim. of 2m vars. (black,
dashed), AMSR-E SM (gray), and both (gray, dashed).
Draper et al, 2010 (JGR)

See also Seuffert et al, 2004 (J. Hydromet), Dharssi et al, 2011 (HESS) , de Rosnay et al, 2012 (QJRMS)
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Assimilation of GRACE TWS (M. Girotto)

◮ GRACE measures the distance
between twin satellites to detect
gravity anomalies

◮ Terrestrial Water Storage
(TWS) anomalies then retrieved
from the gravity anomaly

◮ Observation is change in
monthly mean TWS, at
∼basin-scale horizontal
resolution (330 km at equator)

+ve: observation over full profile
-ve: temporally and spatially coarse
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TWSOL 

y* (i.e. assimilated GRACE-TWS) 

1000 
 
 
 

 
800 
 
 
 

 
600 
 
 
 

 
400 
 
 
 

 
200 

(a) 

(b) 

clara.draper@nasa.gov

LDAS overview, Frontiers in Ensemble DA, 6 Aug, 2015, NCAR, Boulder, CO. 17 / 27



Assimilation of GRACE TWS (M. Girotto)

◮ Assimilate (JPL 1◦ ) GRACE observations into
Catchment LSM at 36 km resolution, with an
EnKF filter (localization radius 3◦)

◮ Linearly rescale ∆TWS obs. into
Catchment-specific TWS using the Catchment
climatology

◮ GRACE assimilation improves model
groundwater, but not root-zone or near-surface
soil moisture

◮ Assimilate together with near-surface soil
moisture observations

March 2011, mean increments
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Assimilation of geostationary land Tskin

◮ Near-real time
geostationary Tskin data
set from NASA Langley
Research Center

◮ Reported hourly (clear-sky) at 0.25◦ resolution
◮ GOES-E, GOES-W, Meteosat-9, MTSAT-2, FengYun-2E

◮ Observation of the TIR clear-sky effective radiative temperature
of the land surface

◮ Catchment equivalent, Tsurf , is the average temperature of the
canopy and soil surface for an arbitrarily thin layer with minimal
heat capacity
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Assimilation of geostationary land Tskin

◮ Use a bias-aware assimilation with model bias correction
◮ Update model Tsurf towards mean geostationary observed Tskin

(assuming latter is unbiased!)
◮ Use a two-stage EnKF to estimate forecast biases from the O-F

◮ Assimilate the geostationary Tskin into the GEOS-5 atmospheric
assimilation and modeling system

◮ Use weakly coupled LDAS and ADAS system, GEOS-5 LA-DAS

◮ Motivation:
◮ Improve modeled low level atmosphere
◮ Improve background Tskin for assimilation of land-sensitive

atmospheric observation
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LDAS with forecast bias correction

◮ Bias update
b−
t+1 = (1 −∆tmod/τ)b

+
t

b+t = b−t −Lt(< yt−H [x−t −b−t ] >)
Assume Px

∼ Pb gives Lt = αKt
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See also Reichle et al, 2010 ( J. Hydromet.), Bosilovich et al, 2007 (J. Met. Soc. Japan)
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Evaluation against NCDC T2m station observations
1-14 August mean O-F T2m [K]

ADAS, 21 UTC

LADAS, 21 UTC

ADAS, 9 UTC

LADAS, 9 UTC
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◮ Improvements in nighttime T2m biases
◮ V. little impact during the day (and possible negative

consequences)
◮ Currently testing changes to GEOS-5 Tskin formulation
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Summary

◮ Land assimilation is v. different to atmospheric assimilation (no
adjoint, models have no horizontal flow, damped physics, often no
recognized ‘truth’ for anchoring observed and forecast biases)

◮ Global to continental-scale assimilation has often been uni-variate
in offline (land only) systems, strong focus on soil moisture (also
land surface temperature, TWS, snow cover, snow depth)

◮ Can improve unobserved variables (root-zone soil moisture from
near-surface soil moisture), downscale information from coarse
observations (TWS components at finer resolution from GRACE)
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Future challenges

◮ Multi-variate assimilation

◮ Assimilation in coupled systems

◮ Consistent improvements to dependent flux forecasts (LH, SH,
runoff)

◮ Direct assimilation of satellite radiance and backscatter

◮ Specification of error variances, evaluation of assimilation output

◮ Handling of systematic differences in observation and forecasts
(within assimilation, diagnosing causes)

◮ Assimilation of new observations (SMAP freeze-thaw), with new
models (global dynamic vegetation)
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Thank you for listening
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