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Coupled Climate-Carbon Cycle models
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Uncertainty in Coupled Climate-CC Models

VOLUME 19 JOURNAL OF CLIMATE 15 JuLy 2006

« This uncertainty stems from 2006
i . Stru ctu ral unce rtai nty Climate-Carbon Cycle Feedback Analysis: Results from the C*MIP

Model Intercomparison
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Uncertainty in Coupled Climate-CC Models

This uncertainty stems from 2014

i. Structural uncertainty

Uncertainties in CMIPS Climate Projections due to Carbon Cycle Feedbacks

-m -
il. P a I'a m ete I' U n Ce I'ta | n ty PIERRE FRIEDLINGSTEIN,* MALTE MEINSHAUSEN, " VIVEK K. ARORA,* CHRIS D. JONES,®

ALESSANDRO ANAV,* SPENCER K. LIDDICOAT,® AND RETO KNUTTI®

lii. Initial conditions uncertainty

iv. Boundary conditions
uncertainty

« Need to find (new) ways to use
(new) observations to:

— Evaluate
— Benchmark
— Constrain
— Assimilate
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Is DA different for NWP and CC models?

| Data Assimilation in NWP Data Assimilation in CLM

Main objective Forecast improvement

Dynamics

Observations

Mathematical
problem

Physics —
essentially well known from first
principles

High spatial and temporal
density

Optimization of initial conditions

Process understanding
Regional quantification
Forecasting

Physical, biological, chemical —
Only partially known, empirical
relationships

Very different spatial and temporal
characteristics

Initial value problem (e.g. pools)
Boundary conditions (e.g. fluxes)
Parameter optimization
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DATA
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In-situ Flux tower observations

Schimel et al., 2015
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In-situ vegetation observations
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National Ecological Observatory Network

» Collect and openly distribute data on the drivers of
and responses to ecological change

« Continental scope and 30-year time horizon

« Standardized methods of data collection, high
investment in QA/QC, and calibration

NEON FIELD SITES s
A Relocatable Site
16 - PACIFIC « Aquatic Site
NORTHWEST/ 22 12- NORTHERN " s i
N - ROCKIES . € Ay
L'A . e
LAKES o
15 - GREAT 1- NORTHEAST
BASIN 6- PRAIRIE
PENINSULA
5 O A
17-PACFI,  @° o )
SOUTHWEST R 10;%}2“ G4 7- APPLACHIANS
13 - SOUTHERN ROCKIES LT e
44-DESERT & COLORADO PLATEAU o,
SOUTHWEST 4 GG ;
& COMPLEX
° 9
18-TUNDRA~* E 11-SOUTHERN . o
e PLAINS 3-SOUTHEAST)
A
19-TAIGA 4- ATLANTIC
NEOTROPICAL
20-PACFIC o n
TROPICAL  *

© 2012 National Ecological Observatory Network, Inc. ALL RIGHTS RESERVED.



Carbon cycle Observations

« Many relevant observations

« Some standard, some less
common

— Eddy covariance fluxes of energy,
water and carbon

— Profiles of soil temperature and
moisture, and soil respiration

— Profiles of soil carbon and nitrogen
pools

— NPP, litterfall and fine root turnover
from minirhizotrons

— Profiles of CO, and H,0 vapor
isotopes

— Soil microbial biomass, diversity &
functional composition

— Lidar and hyperspectral derived
biomass, leaf area and canopy
chemistrg/ at <1m resolution over
100s km
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Remote Sensing (Products)

Fluorescence
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NEON in CLM-space
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Alternative approaches
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Upscale the observations
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MODEL
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The evolution of Earth System Models

Growth of Climate Modeling

Upper Atmosphere
Atmospheric Chemistry

Dust/Sea Spray/Carbon Aerosols
Interactive Vegetation
Atmospheric/Land Surface/Vegetation Coupled Climate Model
Sulfate Aerosol
Ocean Sealce
Biogeochemical Cycles

Carbon Cycle

Ice Sheet

Marine Ecosystems
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The role of the Community Land Model

* Provide energy, water, and momentum fluxes to
atmospheric model

— Partition turbulent fluxes into latent vs. sensible heat
— Determine absorbed solar radiation, surface albedo
 Runoff to ocean model

— Riverine transport of water (and sediment, carbon,
and nutrients)

 Trace gas and particle exchange to atmospheric model
— CO, fluxes to atmosphere
— CH,4, N,O
— Dust emissions

— Biogenic Volatile Organic Compound emissions




The Community Land Model

Biogeochemical cycles CL M4 . 5
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Carbon and nifrogen pools

C an N pools for each tissue (structural pools)

leaf Leaf

Stem (live and dead)

Coarse root (live and dead)

Fine root
Each structural pool has two corresponding
storage pools

Long-term storage (> 1yr)

[ storage J Short-term storage (< 1yr)

pools Additional pools
Growth respiration storage (C)

dead
stem

live stem

\ cieaarl:e S Maintenance respiration reserve (C)
ﬂne\ oot/ \ Retranslocated nitrogen
/rog/\ §\\
- 7-3’ N Total number of pools
Carbon: 6 + 12+ 2 =20

\/ Nitrogen: 6 + 12+ 1 =19

Oleson et al. 2010




Subgrid tiling structure and Plant functional types

Bare ground

Needleleaf Evergreen, Temperate
Needleleaf Evergreen, Boreal
Needleleaf Deciduous, Boreal
Broadleaf Evergreen, Tropical
Broadleaf Evergreen, Temperate
Broadleaf Deciduous, Tropical

\r\l Broadleaf Deciduous, Temperate
Vi d — 9 Broadleaf Deciduous, Boreal

Grid cell

O~NO OB WN -

Landunit

10 Broadleaf Evergreen Shrub, Temperate
11 Broadleaf Deciduous Shrub, Temperate
12 Broadleaf Deciduous Shrub, Boreal

13 C3 Arctic Grasses

Glacier Wetland Lake 14 C3 non-Arctic Grasses
Columns 15 C4 Grass
16 Crop
Soil
Type 1 Specific subgrid units don’t

necessarily have location
PFT information

Specific observations have
location information but don’t
normally have subgrid unit
information
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Main components of CLM

Soil hydrology and thermodynamics model
Photosynthesis model

Carbon and nitrogen cycle model
Vegetation dynamics model

Radiation and albedo model

River Transport model

Lake model

Urban model

9. Volatile Organic Compound emissions model
10.Dust emissions model

11. Crop model

12.Snow model

13.Carbon and water isotopes model

14.Fire model

© N OO




Main components of CLM

Soil hydrology and thermodynamics model |
Photosynthesis model 1
Carbon and nitrogen cycle model
Vegetation dynamics model
Radiation and albedo model
River Transport model
Lake model
Urban model
9. Volatile Organic Compound emissions model
10.Dust emissions model
11. Crop model
(12.Snow model |

.m .N .m r.mw P f.w\leﬂf.A\

13.Carbon and water isotopes model
14.Fire model




DATA ASSIMILATION RESEARCH
TESTBED




Data Assimilation Research Testbed (DART)

Observations

DART is a community facility
for ensemble DA

Uses a variety of flavors of

filters oycle?

_ : ) N
Ensemble_ Adjustment o Assimilate
Kalman Filter Sy

« Many enhancements to basic Hﬂr S N
filtering algorithms e veotor '

— Adaptive inflation Wﬁ i

— Localization

Uses new multi-instance
capability within CESM

ﬂ

)
N
) N
— -
| new N
Data model initial
sl model
Assimilation states states

Resea rch
Testbed

‘ advance
model

states

n
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Multi-instance CESM code

« A multi-instance version of CESM has been developed that more
easily facilitates ensemble-based DA

 For example, multiple land models can be driven by multiple
data-atmospheres in a single executable.

« This capability is available in the current CESM release.

AN
i 1;\' lndl ’i'w‘ !
a\nj///" I CLM namelist 1
\ / l AN .F[;F.’rcon = /path/to/pftfilel.nc |
glcl |

cpl «—><_7) finidat = /path/to/inifilel.nc




Multi-instances of data atmospheres

« 80 member, 6 hourly
reanalysis available, 1998 -
2010

 Assimilation uses 80
members of 2° FV CAM

forced by a single ocean

* O (1 million) atmospheric obs
are assimilated every day

« Each CLM ensemble
member is forced with a
different atmospheric
reanalysis member

 Generates spread in the land
model

500 hPa GPH
Feb 17 2003
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CLM-DART coupling

e Our goal has been to “Do no harm” to CLM

- DART’s namelist allows you to choose what CLM variables get
updated by the assimilation

&clm_vars_nml

clm _state variables = 'frac sno', '"KIND SNOWCOVER_FRAC',
'DZSNO', '"KIND_ SNOW THICKNESS',
'H20SNO ', "KIND_SNOW WATER’,
'T_SOISNO', '"KIND SOIL TEMPERATURE",
‘leafc’, ‘KIND LEAF_CARBON’ /

« At predetermined assimilation time step:

CLM stops and writes restart and history files

DART state vector extracted

Increments calculated by filter

Restart file updated with adjusted DART state vector
CLM restarts

SAR

© 2012 National Ecological Observatory Network, Inc. ALL RIGHTS RESERVED.



Observations we can use with CLM-DART

« Leaf area index

« Above ground biomass

« Canopy nitrogen

« Snow cover fraction

« Microwave brightness temperature
« Cosmic ray neutron intensities

« Total water storage anomalies (GRACE)
« Soil moisture and temperature

« Latent heat flux

« Sensible heat flux

« Carbon fluxes (NEP, GPP, ER, SR)




PERFECT MODEL EXAMPLES
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Observing System Simulation Experiment

CLM spun up at NM Pinon-
Juniper Ameriflux site

80 member model ensemble et L
run forward for “decades” e R
One ensemble member treated as truth

Truth “observed” periodically with
prescribed observation uncertainties

These synthetic observations are then
assimilated




Ensemble of climate forcing
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Ensemble of climate forcing
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Ensemble of land surface states
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“truth”
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Observations around the “truth”
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Assimilation of those synthetic observations
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1I0MAass

Effects of annual NPP on B
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Assimilating both Biomass and annual NPP
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Correlations with Biomass
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Correlations with annual NPP
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Updating unobserved states
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Impact of assimilation on NEE
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Effects on forecast
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Mean LAl from 80 ensemble members
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LAl spread from 80 ensemble members
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Ameriflux and MODIS LAl observations
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Ameriflux and MODIS LAl observations
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Ameriflux and MODIS LAl observations
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MODIS LAI observations only
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Flux & MODIS LAI observations only
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1. Introduction I

2. Ecological State Estimation

The Data Assimilation Research Testbed (DART) is an open
source community software facility for ensemble data assim-
ilation developed at the National Center for Atmospheric Re-
search (NCAR). DART works with a wide variety of models

. Building an i DARTanda
new model does not require an adjoint and generally requires
no modifications to the model code.

DART works with several land models, including:

« the Community Land Model — CLM,

« the NOAH-LSM,

«the Weather Research and Forecasting Model Hydrologi-
cal modeling extension package — WRF-Hydro, and

«the Community Atmosphere-Biosphere-Land Exchange
(CABLE) model.

DART assimilates dozens of observation types from a vari-

ety of sources. Some of the observations of interest for land

assimilation are:

«in-situ measurements of soil moisture, temperature,

« tower fluxes,

«lea area index,

« total water storage anomalies (i.e. GRAGE),

« cosmic ray neutron intensities,

«and microwave brightness temperatures (Tb).

Anderson, J. L., et al., 2009

The Data Assimilation Research Testbed:
A Community Data_Assimilation Facilty.
BAMS 90 No. 9 pp. 12831296

%3  http:/www.image.ucar.edu/DAReS/DART
has information about how to download and
install DART, a full DART tutorial (included

O] with the distribution), and how to contact us.

1.1 Land Model Structure Complications

Many land models divide gridcells into proportional units
based on land cover characteristics. This is a challenge for
data assimilation as the land units generally have no unique
location information of their own. Observations have specific
locations but may not have land cover metadata.

Location
information is
contained at this
level ONLY!

Observations
occur here!

1.2 Observation Metadata

All ensemble data assimilation systems reqire the abilty

o calculate the expected value of the observation given a

model state. The accurate application of this calculation (the

observation operator) may require:

«knowledge of what land cover unit(s) or PFT to use for the
calculation,

«soil properties, and

«instrument-specific parameters

Some of these could come from a lookup table based on PFT

or location, but the lookup table generally must be recom-

puted to match the model resolution. Some (like Tb polariza-

tions and frequencies) must be part of each observation.

FalAGU 2014
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In an observation system simulation experiment (OSSE) we
treat one ensemble member as "truth” and sample with ap-
propriate noise at 60 NEON site locations to observe Leaf
Area Index (LAI) every 8 days, Leaf Nitrogen every 12 days,
and Net Ecosystem Productivity and Evapotranspiration ev-
ery 0.5 hours. We thenii the impacts of assimilati

T. Hoar!, A. Fox?, Y. Zhang?, R. Rosolem?, A. Toure®, B. Evans®, J. McCreight!

National Center for Atmospheric Research, Boulder, Colorado, USA
SUniversity of Texas at Austin, Austin, Texas, USA
SNASA GSFC, SSAI, Greenbelt, Maryland, USA

“University of Bristol, Bristol, England

%Macquarie University, Sydney, NSW, Australia

dart@ucar.edu

eV S Y

520,000 synthetic observations over a 3 month period.

Figure 1: This "sawtooth” plot shows LAI simulated by all 80
ensemble members in a grid cell with observations. The in-
crements (updates) calculated by the filter move the ensem-
ble towards the observations and result in  reduction in un-
certainty (spread) around the truth. In this case, uncertainty
s reduced too much and the result s slightly biased.
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Figure 2: The DART state vector contains more than 20
variables, including all the lerge carbon and nitrogen pools.
These can all be updated by the filter through their covari-
ance with observed variables. The allocation algorithms in
CLM mean observations provide a strong constraint on many
unobserved variables.
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Figure 3: Change in LAl spread in posterior ensemble, 31
July 2005. The largest innovations are near the observa-
tions, but not necessarily in the exact grid cel. Carbon pools
from all grid cels are in the DART state vector and informa-
tion can propagate from sites to regions. A cutoff value limits
the distance over which this can occur.

3. Multisensor Assimilation I

Yongfei Zhang, University of Texas at Austin.

The DART algorithms can assimilate observations with un-
correlated observation errors in any order (Anderson, 2003).
This allows one to simultaneously assimlate MODIS/Terra
snow cover fraction (SCF — with lttle information about
snow amount) and Gravity Recovery and Glimate Experiment
(GRACE) estimates of total water storage anomalies.

Figure 4: Left: Ensemble spread of SCF for (top) DJF and
(bottom) MAM in 2002-2003. Ensemble spread is calculated
as the standard deviation of SCF among 40 ensemble mem-
bers. Right: The difference of SCF between the data assim-
ilation case and the open loop case averaged for (top) DJF
and (bottom) MAM.
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Figure 5: Top: Mean SCF for Dec 2002 through Feb 2003.
Middle: Impact (assimilation minus open loop) on snow water
equivalent for 15 March 2003 for MODIS-only assimilati

75 predicted T

Air 9, /

A Trenrnts

s,

S

Tpenrnt, o
Sol ;7%; P TS

Figure 7: Schematic of the MEMLS snow RTM (Wiesmann
and Métizer, 1999).

RTM's also have parameters that must be estimated and
are usally spatially varying. (See, for example, De Lannoy
et. al, 2013: Global Calibration of the GEOS-5 L-Band Mi-
crowave Radiative Transfer Model over Nonfrozen Land Us-
ing SMOS Observations. J. Hydrometeor, 14, 765-785. doi:
http/dx.doi.org/10.1175/JHM-D-12-092.1)

86 10v 8@ 10V
Av.RMSE 126K Ao

Figure 8: Annual mean bias, RMSE and anomaly correlation
coefficient (R) between predicted Tb and AMSR-E observa-
tions during 2002-2010. This is just 1 of 6 frequencies, and 1
polarization (10.7 Ghz, V pol).

Innovations in Snow Cover Fraction

Bottom: Impact on SCF for an assimilation with both MODIS
and GRACE observations. GRACE is clearly providing addi-
tional information in regions where the SCF is saturated.
#33[E  Zhang, Y.-F., et al., 2014 Assimiation of MODIS

‘snow cover through the Data Assimilation Research
Testbed and the Community Land Model version 4
DO: 10.1002/2013JD021329

. Brightness Temperature Observations

Ally M. Toure, NASA GSFC, USRA.

The objective is to assess the performance of the bright-
ness temperature (Tb) prediction in the Community Land sur-
face Model version 4 (CLM4) coupled with a snow Radiative
Transfer Model (RTM).

Atmosphere
Canopy
~ Snowpack

Figure 6: The main contributions to the microwave emission
measured by a spaceborne radiometer: 1) upward emitted
soil emission, 2) snowpack, 3) combined canopy and snow-
pack, 4) canopy, and 5) the atmosphere.

The RTM used to predict Tb using the GLM4 output is the Mi-
crowave Emission Model of Layered Snowpacks (MEMLS).
It simulates Tbs for multi-layer snowpack and is valid for the
frequency range of 5 GHz to 100 GHz. Typical inputs o the
model are: 7 : the snowpack brightness temperature, Sy :
the ground-snow interface reflectivity, 7 : the ground tem-
perature, S : the interface reflectivity on top of each snow
layer j, d; : layer thickness, T; : layer temperature, 7, : layer
internal reflectivity, c; : layer emissivity, £; : transmissivity of
each layer, and 7., : the downwelling (sky) radiation.

© 2012 National Ecological Observatory Network, Inc. ALL RIGHTS RESERVED.
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Figure 9: This figure shows the amount of change induced
in the snow cover fraction from assimilating synthetic bright-
ness temperatures at 10 locations (shown as O) for 31 Jan-
uary 2001.

Tb assimilation presents other problems for DA. If you were to
use all 6 AMSR-E frequencies at both polarizations for both
ascending and descending swaths, you would be assimilat-
ing more than 6,000,000 observations per day in the North-
ern Hemisphere alone!

5. Soil Moisture Observations ]

Rafael Rosolem, University of Bristol.

DART has been coupled to the NOAH Land Surface Model
(HRLDAS-V3.3) and provides an operator to return neutron
intensity "observations” given a soil moisture profle. This can
be used to update the NOAH model state.

5.1 Neutron Intensity Observations

| The COSMOS probe measures
the neutron intensity for a given
volume, which is related to the
amount of Hydrogen present. The

Q‘“” COSMIC model relates the neu-
5 > tron intensity to total soil moisture.

som

Figure 10: An early result for the Santa Rita site.

2National Ecological Observatory Network, Boulder, Colorado, USA
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Figure 11: Expected neutron intensity (counts per hour —
ph) from a set of 3 experiments. The (known) true state
is a solid black line, realstic observations (ie.  truth plus
noise) are indicated by the gray dots, blue diamonds are a
free run (ie. no DA), red dots are assimilation every hour,
green squares are assimilation every 2 days.

5.2 Real Observations

3|
V}J{FML Y I

Y
Figure 12: These graphics assess the performance of the
assimilation of neutron intensity observations on soil mois-
ture to withheld traitional soil moisture observations. The
posterior mean is plotted in red.

Rosolem, R., et al., 2014 Translating above-
ground cosmic-ray neutron intensity to high-frequency
soil _moisture _profiles at - sub-kiometer scale.
HESS 18, pp. 4363-4379

6. Hydrologic Assimilation

James McCreight, NCAR.

The Weather Research and Forecasting Model Hydrological
modeling extension package (WRF-Hydro) is a community-
based model coupling framework designed to link multi-scale
process models of the atmosphere and terrestrial hydrology.
Research with DART and WRF-Hydro will enable: 1) im-
proved forecasts by reducing error in initial conditions, 2)
high-quality reanalysis, 3) diagnosis of model or observation
errors, and 4) exploration of targeted observations.

6.1 Streamflow Assimilation

_ observations in red !
assimilation in grey Ty

Figure 13: Simulation before including several parameters
into the DA for the two sets of precipitation forcing data. Top:
precipitation from NOAA's Multisensor Precipitation Estimate
(MPE), Bottom: NLDAS precipitation. The assimilation result
runoff (grey) is highly dependent on the forcing.

observations in red
assimilation in grey
L. bt

Figure 14:  Simulation after including several parameters
into the DA for the two sets of forcing data.
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| 7. Land Surface Data Assimilation — CABLE I

Brad Evans, TERN/eMAST  Luigi Renzullo, CSIRO

&y

TERN

Researchers from CSIRO, Macquarie University and the Na-
tional Computing Infrastructure (NCI) teamed up with US
collaborators to install and run DART on NCI's supercom-
puter (Raijin) and coupled it to Australia's Community At-
mosphere Biosphere Land Exchange (CABLE) land surface
model. The endeavour marks significant progress toward
the vision of the Ecosystem Modelling and Scaling Infras-
tructure (eMAST) facility under the Terrestrial Ecosystem Re-
search Network (TERN) to develop Australia’s first modelling
and data integration system for ecosystem science and mon-
itoring at unparalleled scales in space and time. The sys-
tem brings together a range of disparate ecological observa-
tions from ground- and space-based sensing networks into
CABLE's modelling framework.

v A

Figure 15: A schematic of the assimilation system with
DART and CABLE. Starting at the top: DART reads in an
initial ensemble, the observations, the run-time control infor-
‘mation and performs an assimilation to create posterior es-
timates of the CABLE variables. DART TO CABLE cOnveys
the posteriors to a set of CABLE restart files which are ad-
vanced by CABLE to the time of the next observation. CA-
BLE TO DART then extracts the prognostic state variables of
interest and converts them to a DART-compliant format.

Some of the instruments providing the observations that can
be assimilated in the CABLE/DART system. Left-to-right:
Eddy Covariance (Cape Tribulation), OzFlux (Scott Farm),
CosmOz (Tullochgorum).

The Terrstrial Ecosystem Research Network Ecosystom
Modeling and Scalng Infrasinctur s supporod by the
Ausiralian Government through the Natonal Collsborative
Research Infastruciure Sirategy (NCAIS),

Nationa Research
nirssucture tor Austraia

Anderson, J.-L., 2003
A local least squares framework for ensemble fiering.
MWR131, pp. 634-642
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Research is sponsored by the
National Science Foundation.




1. Introduction I

The Data Assimilation Research Testbed (DART) is an open
source community software facility for ensemble data assim-
ilation developed at the National Center for Atmospheric Re-
search (NCAR). DART works with a wide variety of models

. Building an i DARTanda
new model does not require an adjoint and generally requires
no modifications to the model code.

DART works with several land models, including:

« the Community Land Model — CLM,

« the NOAH-LSM,

«the Weather Research and Forecasting Model Hydrologi-
cal modeling extension package — WRF-Hydro, and

«the Community Atmosphere-Biosphere-Land Exchange
(CABLE) model.

DART assimilates dozens of observation types from a vari-

ety of sources. Some of the observations of interest for land

assimilation are:

«in-situ measurements of soil moisture, temperature,

« tower fluxes,

«lea area index,

« total water storage anomalies (i.e. GRAGE),

« cosmic ray neutron intensities,

«and microwave brightness temperatures (Tb).

Anderson, J. L., et al., 2009
The Data Assimilation Research Testbed:
A Community Data_Assimilation Facilty.
BAMS 90 No. 9 pp. 12831296

%3  http:/www.image.ucar.edu/DAReS/DART
has information about how to download and
install DART, a full DART tutorial (included

O] with the distribution), and how to contact us.

1.1 Land Model Structure Complications

Many land models divide gridcells into proportional units
based on land cover characteristics. This is a challenge for
data assimilation as the land units generally have no unique
location information of their own. Observations have specific
locations but may not have land cover metadata.

Location
information is
contained at this
level ONLY!

Observations
occur here!

1.2 Observation Metadata

All ensemble data assimilation systems reqire the abilty

o calculate the expected value of the observation given a

model state. The accurate application of this calculation (the

observation operator) may require:

«knowledge of what land cover unit(s) or PFT to use for the
calculation,

«soil properties, and

«instrument-specific parameters

Some of these could come from a lookup table based on PFT

or location, but the lookup table generally must be recom-

puted to match the model resolution. Some (like Tb polariza-

tions and frequencies) must be part of each observation.

FalAGU 2014

&
»

Notional Ecological Observatory Network

[

Andrew F.

In an obs¢
treat one

propriate

Area Inde:
and Net E|
ery0.5ho
520,000

Figure 1:
ensemble,
crements
ble towarc
certainty (
s reducec

Figure 2:
variables,
These cay
ance with
CLM mea|
unobserve

Figure 3:
July 2005
tions, but |
from all g1
tion can !
the distan|

—

Yongtei Z|

The DART
correlated
This allow
snow cov]
snow amo|
(GRACE)

@JAGU PUBLICATIONS

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2013JD021329

Key Points:

« This work interfaced CLM4 with DART

+ MODIS snow cover is assimilated into
DART/CLM4

« The RMSE of snow cover and snow
depth is reduced

Correspondence to:
Z-L. Yang,
liang@jsg.utexas.edu

Citation:

Zhang, Y-F., T. J. Hoar, Z-L. Yang,
J. L. Anderson, A.M.Toure, and

M. Rodell (2014), Assimilation of MODIS
snow cover through the Data
Assimilation Research Testbed and the
Community Land Model version 4,

J. Geophys. Res. Atmos., 119, 7091-7103,
doi:10.1002/2013)D021329.

Received 7 DEC 2013

Accepted 28 MAY 2014

Accepted article online 2 JUN 2014
Published online 18 JUN 2014

Assimilation of MODIS snow cover through the Data
Assimilation Research Testbed and the Community
Land Model version 4

Yong-Fei Zhang', Tim J. Hoar?, Zong-Liang Yang’, Jeffrey L. Anderson?, Ally M. Toure>*,
and Matthew Rodell*

"Department of Geological Sciences, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin,
Austin, Texas, USA, 2?National Center for Atmospheric Research, Boulder, Colorado, USA, *Universities Space Research
Association, Columbia, Maryland, USA, “NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Abstract To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate
Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the
Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface
between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data
assimilation system has a large ensemble (80-member) atmospheric forcing that facilitates ensemble-based
land data assimilation. We use 40 randomly chosen forcing members to drive 40 CLM members as a
compromise between computational cost and the data assimilation performance. The localization distance, a
parameter in DART, was tuned to optimize the data assimilation performance at the global scale. Snow water
equivalent (SWE) and snow depth are adjusted via the ensemble adjustment Kalman filter, particularly in
regions with large SCF variability. The root-mean-square error of the forecast SCF against MODIS SCFis largely
reduced. In DJF (December-January-February), the discrepancy between MODIS and CLM4 is broadly
ameliorated in the lower-middle latitudes (23°-45°N). Only minimal modifications are made in the
higher-middle (45°-66°N) and high latitudes, part of which is due to the agreement between model and
observation when snow cover is nearly 100%. In some regions it also reveals that CLM4-modeled snow cover
lacks heterogeneous features compared to MODIS. In MAM (March-April-May), adjustments to snow

move poleward mainly due to the northward movement of the snowline (i.e., where largest SCF uncertainty is
and SCF assimilation has the greatest impact). The effectiveness of data assimilation also varies with
vegetation types, with mixed performance over forest regions and consistently good performance over grass,
which can partly be explained by the linearity of the relationship between SCF and SWE in the model
ensembles. The updated snow depth was compared to the Canadian Meteorological Center (CMC) data.
Differences between CMC and CLM4 are generally reduced in densely monitored regions.

1. Introduction

Snow plays a unique role in the global hydrological cycle, water resources management, and atmospheric
predictability. Its special physical properties (high albedo, low thermal conductivity, and ability to change
phase) significantly modulate energy and water exchanges between the atmosphere and the land surface
[Goodison et al., 1999]. In regions where streamflow is dominated by snowmelt, the performance of
hydrological forecasts largely depends on snowpack estimates at the beginning of the forecast period [Clark
and Hay, 2004]. Snowpack acts as a key boundary condition for the atmosphere and influences atmospheric
predictability. A more realistic simulated snowpack enhances springtime surface air temperature
predictability [e.g., Peings et al., 2010]. Furthermore, snowpack impacts atmospheric circulations through
teleconnections. Numerous modeling and observational studies have shown an inverse relationship
between the winter and springtime Eurasian snow-covered area and the summertime Indian Monsoon
rainfall [e.g., Vernek et al., 1995; Bamzai and Shukla, 1999; Turner and Slingo, 2011].

A variety of snowpack products have been generated for hydroclimatic analysis and evaluation of climate
models. Ground measurements usually lack spatial representativeness, especially in regions of high
heterogeneity [Liston, 2004], and are difficult to obtain in many regions especially in complex terrains;
therefore, satellite remote sensing plays an important role in producing global snowpack estimates. Based on
the optical properties of snow, observations of visible and near-infrared bands can detect snow extent in
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Researchers from CSIRO, Macquarie University and the Na-
tional Computing Infrastructure (NCI) teamed up with US
collaborators to install and run DART on NCI's supercom-
puter (Raijin) and coupled it to Australia's Community At-
mosphere Biosphere Land Exchange (CABLE) land surface
model. The endeavour marks significant progress toward
the vision of the Ecosystem Modelling and Scaling Infras-
tructure (eMAST) facility under the Terrestrial Ecosystem Re-
search Network (TERN) to develop Australia’s first modelling
and data integration system for ecosystem science and mon-
itoring at unparalleled scales in space and time. The sys-
tem brings together a range of disparate ecological observa-
tions from ground- and space-based sensing networks into
CABLE's modelling framework.

initial
CABLE
states.

Figure 15: A schematic of the assimilation system with
DART and GABLE. Starting at the top: DART reads in an
initial ensemble, the observations, the run-time control infor-
mation and performs an assimilation to create posterior es-
timates of the CABLE variables. DART TO CABLE cOnveys
the posteriors to a set of CABLE restart files which are ad-
vanced by CABLE to the time of the next observation. CA-
BLE TO DART then extracts the prognostic state variables of
interest and converts them to a DART-compliant format.
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Some of the instruments providing the observations that can
be assimilated in the CABLE/DART system. Left-to-right:
Eddy Covariance (Cape Tribulation), OzFlux (Scott Farm),
CosmOz (Tullochgorum).
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UNANSWERED QUESTIONS

¢ nean

© 2012 National Ecological Observatory Network, Inc. ALL RIGHTS RESERVED.



Many big questions remain

How to create initial ensemble spread — how large should it be?

How to maintain ensemble spread — is climate forcing variability
the best approach?

What do we do about carbon/water balance — its lost at the
moment and balance checks are removed?

What are the most informative observations to use?

What are the best temporal aggregation strategies for EC flux
tower data?

Can we develop appropriate observation operators to link them
with CLM state?

How can we best use an ensemble DA approach for parameter
estimation — we can augment DART state vector with CLM
parameters, but which ones?




Future Directions

* Optimizing NEON data delivery for use with land models
Constant interaction with the modeling community

 NEON will provide systematic observations sampling a
wide climate space to constrain models in a variety of
ways

Community model development and improvement

« Community tools for data assimilation provides a means of
directly utilizing this new information

Community development of DA techniques with land
models leading to improvements in forecasts
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