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Ensemble sensitivity analysis (ESA) 

•  Identify dynamically relevant covariance structures in space 
and time 

•  Propose observing strategies for mesoscale, short-range 
forecasts in complex terrain 

•  Sensitivity scales (time and space) to infer predictability 
scales 

•  Predictability of specific phenomena 
•  Open issues: 

–  Sampling error 
–  Linearity assumptions in complex terrain 

∂Je
∂xa

How does the change in a set of initial state 
variables xs change a forecast metric J? 
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Ensemble Sensitivity Background 

•  Ancell and Hakim (2007) showed 
theoretical equivalence between 
adjoint and ensemble sensitivity for 
linear perturbations and Gaussian 
statistics 

•  Relies on linearization about an 
ensemble-mean trajectory 

•  Rigorous application has so far 
been limited to large-scale (smooth) 
and integrated processes where 
strong linear relationships are more 
likely 

An optimal ensemble data 
assimilation system provides 

an appropriate sample 

where the independent variable is the innovation, y !
H(xb), the dependent variable is the forecast metric,
and the “slope” is given by the covariance between the
forecast metric and the model estimate of the observa-
tion, J(HXb)T, divided by the covariance of the inde-
pendent variables (innovation covariance). For a single
observation, the innovation, innovation covariance, and
slope are all scalars, and the calculation can be evalu-
ated rapidly. When the forecast metric is a function of
the forecast state vector, we shall refer to "J as the
change in the forecast metric associated with the obser-
vation, and when the forecast metric refers to a forecast
error, we shall refer to "J as the observation impact.

In addition to assessing the change in the expected
value of the metric, we also assess the change in the
forecast-metric variance due to observation assimila-
tion via (Ancell and Hakim 2007)

!" # !J$HXb%T$HPbHT & R%!1HXbJT. $6%

For a single observation, this expression can be evalu-
ated as a product of two scalars: the inverse of the
innovation variance, (HPbHT & R)!1, and the forecast-
metric-observation-estimate covariance, J(HXb)T. Fur-
thermore, we observe that (6) is negative definite since
the right-hand side is proportional to the square of the
forecast-metric-observation-estimate covariance.

These predictions of "J and "' are computed from
the ensemble without the buoy and are verified against
perturbed forecasts generated from an analysis where a
single buoy pressure observation is withheld. We pro-
ceed by describing the change in the average SLP due
to assimilating the buoy during one case characterized
by an eastern Pacific cyclogenesis event, and then sum-
marize all 30 cases.

Figure 5a shows the UW EnKF ensemble-mean SLP
analysis and forecast sensitivities for 1200 UTC 5 Feb-
ruary 2005. A frontal wave is situated on the eastern
edge of a deeper cyclone near the international date
line; during the next 24 h, this wave deepens as it moves
east toward the North American coast. Forecast sensi-
tivities are maximized along the eastern edge of the
frontal wave near buoy 46036 (dot). Increasing (de-
creasing) the SLP in this region of the analysis by 1 hPa,
which amounts to shifting the frontal wave to the north-
west (southeast), leads to a 1.5-hPa increase (decrease)
in the forecast metric.

The difference between the control and no-buoy
analysis and their resulting 24-h forecast differences are
shown in Figs. 5b and 5c, respectively. For the control
analysis, the SLP is 0.4 hPa lower to the south of the
wave and 0.2 hPa higher to the north of the wave; thus

FIG. 5. (a) Sensitivity of the western WA 24-h SLP forecast to
the SLP analysis (shading; hPa hPa!1) and the UW EnKF en-
semble-mean analysis of SLP (contours; hPa) for the forecast ini-
tialized at 1200 UTC 5 Feb 2005. (b) Difference between the
no-buoy ensemble-mean analysis SLP field and the control en-
semble-mean analysis SLP field at 1200 UTC 5 Feb 2005 (shading;
hPa). The no-buoy ensemble-mean analysis of SLP is given by the
solid lines (hPa). (c) As in (b), but for the 24-h forecast of SLP
valid at 1200 UTC 6 Feb 2005.
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Fig 5 live 4/C

Sensitivity of 24-h sea-level pressure 
(SLP) over western Washington to SLP 
initial conditions, and ensemble-mean 
SLP (from Torn and Hakim 2008). 
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Experiment framework 

•  96-member ensemble data 
assimilation with the Data 
Assimilation Research 
Testbed (DART)  

•  Weather Research and 
Forecast (WRF) model 

•  Synthetic observations 
identical to rawinsonde 
network and surface 
altimeter 

•  3-h cycling during Jan. 
2009 

36-km 

12-km 

4-km 
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𝑈↓1 , 𝜃↓1  

-  Cross section looking north at U wind (shaded) and potential temperature; 3-h 
      Ensemble mean forecast valid 30 Dec 2008 03Z 
-  J – analogous to the Bulk Richardson number to measures ratio of stability to shear 

across flow separation boundary 
-  Histogram of J  (right) showing Gaussian distribution for metric 

Je = RhB =
g
θ2

θ1 −θ2( )Δz
U1 −U2( )2

U1,θ1

U2,θ2

Downslope winds at CO Springs 



•  Sensitivity of (dJ/dx) for 3-hr θ (left) and Qv (right) at model level 14 
•  Strong dual sensitivities shown in both variables over plains and mountains 
•  Hypothesis – region A related to forcing and shear term in J, region B related to 

air mass characteristics over plains and stability term in J	

•  Good candidates for perturbations of IC for a new ensemble run 

A 
B B 

A 

Predictors for wind storm 

θ at model layer 14 Qv at model layer 14 
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Moisture sensitivity to temperature 

J = 2x2x2 box-mean water vapor mixing ratio over 
Salt Lake City airport 
x=Potential temperature (here on model first layer)
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Sensitivity 
(kg kg-1 K-1) 

∂Je
∂xa

Concept Terrain 

Valid 1800 UCT 24 Jan 



Perturbation experiments 
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Analysis perturbation, θ(K) Forecast perturbation t0+6h (kg kg-1) 

Perturbation of one analysis standard deviation in θ at the 
most sensitive location, regressed to remaining state 
elements.   



Perturbation experiments 
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Analysis perturbation, θ(K) Forecast perturbation t0+6h (kg kg-1) 

Perturbation of one analysis standard deviation in θ at the 
most sensitive location, assimilated with ensemble filter.   



Effect of hypothetical θ observation 

δJe =
∂Je
∂xa

K(yo −hxa )

K = PahT hPahT +R( )
−1

Can test use of sensitivities to 
predict the change in forecast 
metric resulting from a 
hypothetical observation. 
Analysis increment can come 
from: 
•  assimilating synthetic obs 
•  approximation with 

univariate linear regression 
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Effect of approximation 
Diagonal approximation Full covariance 

Approximation under-emphasizes sensitivities local to the response.  Agreement 
on some sensitive points (numbered) to southwest of response. 
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Summary (1) 
•  ESA appears promising for mesoscales and 

in complex terrain; hypothetical observations 
give qualitatively expected forecast change, 
but overestimated response. 

•  At mesoscales with weak sensitivity 
gradients, full covariance (and associated 
inversion) may be necessary. 

•  Linearity appears to hold for a variety of 
perturbations, possibly as large as 10 times 
the standard deviation of the analysis 
variable. 

This research partially funded by Office of Naval Research Award # N00014-11-1-0709, Mountain 
Terrain Atmospheric Modeling and Observations (MATERHORN) Program. 

NCAR TOY, August 6 2015 12 



Ensemble Sensitivity (1) 

Je = X
a!" #$
T
β +ε

β̂ =
∂Je
∂xa

β̂ =Xa Xa( )
T
Xa!

"&
#
$'
−1

Je =QR
-TJe

•  An ensemble sample (size K) of analysis perturbations and forecast 
metrics are assembled into matrix Xa and column vector Je, forming 
the regression equation.  

•  The solution, giving estimated regression coefficients, is the ensemble 
sensitivity defined as the gradient of the forecast metric relative to the 
analysis.  

•  Because K << N (state dimension), the system is extremely under-
determined, but the minimum-norm solution is obtainable via a QR 
decomposition. 
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Ensemble Sensitivity (2) 

Assimilation: a perturbation δxa resulting from assimilating 
an additional observation, multiplied by the sensitivities, 
gives the the expected forecast change resulting from 
assimilating that observation (i.e. the predicted response).  

Ki = Pi
ahi+1

T hi+1Pi
ahi+1

T +Ri+1( )
−1

δJ = ∂Je
∂xa
#

$
%

&

'
(
T

Ki yi+1
o −hi+1xi

a( )

=
∂Je
∂xa
#

$
%

&

'
(
T

δxa

= Je
T Xi

a Xi
a( )
T
Xi
a)
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−1/

0
1

2
3
4

T

Ki yi+1
o −hi+1xi

a( )

Pi
a =Xi

a Xi
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T
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Ensemble Sensitivity (3) 

Ki = Pi
ahi+1

T hi+1Pi
ahi+1

T +Ri+1( )
−1

δJ = ∂Je
∂xa
#

$
%
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'
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T
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∂Je
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a( )

Sampling error in ensemble data assimilation typically 
mitigated by reducing covariances with a function of 
distance; follows intuition that distant covariances must 
be small or zero.  
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Ensemble Sensitivity (4) 

Ki = Pi
ahi+1

T hi+1Pi
ahi+1

T +Ri+1( )
−1
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Sampling error in sensitivities arise in spatio-temporal 
covariances. A few methods have been proposed in the 
ensemble assimilation literature. Here from a Bayesian 
hierarchical estimate (Anderson 2007). 
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Ensemble Sensitivity (5) 

∂J
∂xa

=
XaJe
Pf

≈
XaJe
Da

Da = diag(Pf )

Approximation: in the meteorology literature the 
inversion needed to solve the regression problem is 
always avoided by approximating the covariance 
with its diagonal. The result is a scalar (univariate) 
regression for each element in the state vector. 
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Ensemble sensitivity details 

Je = X
a!" #$
T
β+ε

β̂ =
∂Je
∂xa

=Xa Xa!" #$
T
Xa( )

−1

Je =QR
−TJe

Je  are perturbations about Je  (scalars)
Xa  are perturbations about xa  (vectors)

∂Je
∂xa

= Pa"# $%
−1
XaJe ≈ D

a"# $%
−1
XaJe

Pa =Xa Xa"# $%
T
,  Da = diag Pa( )

Sensitivity is multi-variate linear 
regression; coefficients can be 
estimated via a right pseudo-
inverse. 

More common in the literature is 
to avoid an inversion by 
assuming covariances are zero, 
leading to a scalar problem for 
each state element. 
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Open questions 

•  Ensemble sensitivities in the presence of 
small, fast scales 
– May increase nonlinearity 
–  Increases model error/inadequacy 
– Appear as noise in correlations/covariances 

•  Validity of diagonal approximation 
•  Need to account for sampling error arising 

from finite ensemble 
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Ensemble Sensitivity with Localization 

δJ =α ! Je
T Xi

a TXi
a Xi

a( )
−1"

#$
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&'
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(
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+
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•  Covariance localization, or tapering, can be applied 
•  at the assimilation step with ρ	

•  to the regressions with α	


•  ρ is typically a function of space alone 
•  α is function of space and time, here from a Bayesian 

hierarchical estimate (Anderson 2007) 
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Experiment Details (1) 
•  Nature/truth from Lorenz (2005) one-scale Model II 

or two-scale Model III 
–  Perfect-model experiments 
–  Model error simulated by retaining fast scale in nature run/

truth and eliminating it in the assimilating model 
•  Ensemble-filter data assimilation every 6 h 

–  80 cycles 
•  Network of every-other grid point; or 
•  Network of one-half of domain totally observed 

•  Forecast metric (J) is root-mean square error 
(RMSE) 
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Experiment Details (2) 

•  Apply individual perturbations by assimilating 
individual observation at randomly-chosen 
unobserved gridpoints 

•  Evaluate 6-h forecast response with nonlinear 
model 

•  Compare to 6-h response as predicted by 
linear method:   

 
 

δJ = ∂Je
∂xa
"

#
$

%

&
'
T

δxa
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Perfect Model II 
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Scalar RMSE=2.5137e−03
Matrix RMSE=2.3823e−03
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Scalar RMSE=2.2964e−03
Matrix RMSE=1.9607e−03

Sensitivity without localization Sensitivity with localization 

When only smooth/slow scales present, little difference 
between univariate (scalar) and multivariate (matrix) 
predictions of response to perturbation. 

Here observations are randomly chosen from every other gridpoint (which are un-observed for 
sensitivity calculations). 

NCAR TOY, August 6 2015 23 



Perfect Model III 

Sensitivity without localization Sensitivity with localization 

Here observations are randomly chosen from every other gridpoint (which are un-observed for 
sensitivity calculations). 

When both slow and fast scales are present, diagonal 
approximation is less accurate. Localization slightly 
improves predictions of response. 
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Scalar RMSE=1.2026e−02
Matrix RMSE=8.6145e−03
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Scalar RMSE=8.6623e−03
Matrix RMSE=7.7726e−03
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Imperfect Model 

Here observations are assimilated on half of domain that is data void; more impact from 
observations because greater uncertainty in analysis.  

For imperfect model, diagonal approximation results in 
greater over-prediction of response; multivariate 
sensitivities account for presence of fast scales in real 
system, which appears as noise. 

Sensitivity without localization Sensitivity with localization 
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Scalar RMSE=3.1695e−01
Matrix RMSE=1.6375e−01
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Scalar RMSE=2.6329e−01
Matrix RMSE=6.3356e−02
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Sensitivities in a data void 
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Data void 
•  Top: univariate sensitivities 

are small in the data void 
because analysis 
uncertainty is large 

•  Bottom: multivariate 
sensitivities larger over 
data void than over 
densely observed region, 
consistent with 
expectations 
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Summary (II) 
•  Multivariate sensitivities are possible to estimate by finding a minimum-

norm solution to the resulting underdetermined matrix problem. 
•  Whether univariate or multivariate methods are employed, sampling error 

is a problem. 
•  Sensitivities used to predict the perturbation response in the nonlinear 

system are more accurate when localized/tapered to account for 
sampling error. 

•  Multivariate sensitivities better predict the nonlinear response when: 
•  Fast scales are present 
•  Model error is present 
•  Part of the state is poorly observed and can benefit 

from additional observations 
Results suggest mesoscale sensitivities for real atmospheric 
problems will be more useful if using multivariate estimates. 

This research partially funded by Office of Naval Research Award # N00014-11-1-0709, Mountain Terrain 
Atmospheric Modeling and Observations (MATERHORN) Program. 
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