Variational Ocean Data Assimilation for the Mediterranean Forecasting System

N.Pinardi¹, J. Pistoia², A. Grandi² S.Dobricic³, C.Wikle⁴, R. Milliff⁵, M.Berliner⁶

¹Univ. of Bologna, Department of Physics and Astronomy, Bologna
²Istituto Nazionale di Geofisica e Vulcanologia, Bologna
³Joint Research Center, Ispra, Varese
⁴Dept. of Statistics, Univ. of Missouri, USA
⁵CIRES, University of Colorado, USA
⁶Dept. of Statistics, Ohio State Univ., USA

Summary

- Main aims of data assimilation for ocean predictions
- The Mediterranean Forecasting System
- The Data Assimilation scheme
- Analysis and forecast error structure
- New developments
 - The forecast uncertainty conundrum: ensemble forecasting with wind distributions
 - High frequency error covariance matrix estimates with BHM

Data assimilation for predictions

- Bjerknes (1914) described the two conditions that should be fulfilled in order to solve the prediction problem in atmosphere and oceans
 - I- Know the present state of the system as accurately as possible
 - II- Know the laws of physics that regulate the time evolution of the basic field state variables, i.e. have predictive models
- In order to solve the prediction problem the scientific approach should consider 3 partial problems
 - Comp.1: The observational network: QC and real time data management
 - Comp.2: The diagnostic/data assimilation: selection of algorithms that produce best initial conditions
 - Comp.3: The prognostic component

Mediterranean Forecasting System

Real time observational component

Multisatellite along track sea level

2008-2011 coverage

Multi-sensor daily OI SST

Modelling component

MFS-16L72 NEMO v3.4

Explicit free surface, bilaplacian viscosity and diffusion 1/16° x 1/16° horizontal resolution (6.5 km), 72 unevenly partial steps vertical levels(1.5m-300m) River runoff (seas. clim.) and surface atmo. pressure included Air-sea heat, water and momentum fluxes all interactive Coupling with WWIII model (now only for surface momentum drag)

The ocean 3DVAR scheme (Dobricic and Pinardi, OM, 2008)

A cost function, linearized around the background state, is minimized:

$$J = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} [\mathbf{H}(\delta \mathbf{x}) - \mathbf{d})]^T \mathbf{R}^{-1} [\mathbf{H}(\delta \mathbf{x}) - \mathbf{d})]$$
$$\delta \mathbf{x} = \mathbf{x} - \mathbf{x}_b \qquad \mathbf{d} = [H(\mathbf{x}_b) - \mathbf{y}_o] \text{ misfit}$$

The oceanic vector state is defined:

$$\mathbf{x} = [\mathbf{u}, \mathbf{v}, \eta, \mathbf{T}, \mathbf{S},]^T$$

The background error covariance matrix is defined as:

The ocean 3DVAR scheme (Dobricic and Pinardi, OM, 2008)

$\mathbf{B} = \mathbf{V}\mathbf{V}^T$

The key choice: \mathbf{V} is modeled as a sequence of linear operators:

 $\mathbf{V} = \mathbf{V}_{\mathbf{D}} \mathbf{V}_{\mathbf{uv}} \mathbf{V}_{\mathbf{h}} \mathbf{V}_{\mathbf{H}} \mathbf{V}_{\mathbf{V}}^{\mathsf{t}_{\mathrm{S}}}$

 $V_V^{t_s}$ - Vertical EOFs for T, S cov. V_{uv} - Diagnostic u and v covariances V_H - Horizontal covariances (rec. filter). V_D - Divergence damping filter
(coastal constraint). V_{η} - Barotropic model for eta covar.(coastal constraint).

Key issue for initialization purposes: the vertical structure of the error covariance matrix

A key assimilation problem in the ocean

- Large data sets are at the surface of a fluid heated/cooled above: need to preserve stability to prevent vertical mixing after correction
- Need to "project" satellite altimetry into correct T,S correction profiles

Cyclonic vortex: the SLA dnd T(z) covariance

Thus background error covariance part due to T,S crucial

A key assimilation problem in the ocean

• The coastal constraint: divergence dumping to have flow parallel to coasts and not across

NCAR Frontiers in D-Assim

The vertical error covariance: vertical eigenvectors and eigenvalues

A data matrix is composed with Temperature and Salinity anomalies from a long simulation (10-20 years) or re-analysis for each season and several regions

$$\mathbf{A} = \begin{bmatrix} \underline{h_i \mathbf{dT}_i} \\ H\sigma_T \end{bmatrix} \begin{bmatrix} \underline{h_i \mathbf{dT}_i} \\ H\sigma_T \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dT}_i \\ H\sigma_T \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \\ \mathbf{h}_i \mathbf{dS}_i \\ H\sigma_S \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \\ \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \\ \mathbf{H}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \\ \mathbf{H}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_i \end{bmatrix} \begin{bmatrix} \mathbf{h}_i \mathbf{dS}_$$

The matrix is then decomposed in singular values

$$\mathbf{A} = \mathbf{V}_{\mathbf{V}}^{\mathbf{t}_{\mathbf{S}}} \mathbf{L} \mathbf{S}^{\mathbf{T}}$$

First 20 eigenvectors over about 60 possible

10

20

18

The data are assimilated weekly with a daily window

Weekly assimilation cycle because data of higher quality is available

The MFS deterministic forecast production system

How did the error decrease in 10 years?

The error structure for temperature

SIMAI Conference 8 July 2014

year

What is this vertical error variance in T and S due to?

Errors in atmospheric forcing are projecting on the vertical structure of the temperature & salinity errors

NCAR Frontiers in D-Assim

(2006) Forecast days

The forecast uncertainty conundrum

- Shukla (2005): 'The largest obstacles in realizing the potential predictability of weather and climate are inaccurate models and insufficient observations, rather than an intrinsic limit of predictability'
- Uncertainty of ocean forecasts depends on:
 - Ocean Initial condition errors
 - Atmospheric forcing errors
 - Model errors (Physics, numerics)
- Hypothesis:
 - We use ensemble forecasting as a means to test ocean predictability issues
 - We concentrate on atmospheric wind forcing errors and how they affect the initial condition and forecast errors

Building the wind distributions using Bayesian Hierarchical Modelling (BHM-SVW)

Conceptual and implementation blocks:

Data Stage: 2 types of data Scatterometer winds and ECMWF analyses/forecasts

Process model stage: Raylegh friction surface model translated into a stochastic finite difference equation

NCAR Frontiers in D-Assim

 $u = -\frac{f}{\rho_0 \left(f^2 + \gamma^2\right)} \frac{\partial p}{\partial y} - \frac{\gamma}{\rho_0 \left(f^2 + \gamma^2\right)} \frac{\partial p}{\partial x}$

$$v = \frac{f}{\rho_0 (f^2 + \gamma^2)} \frac{\partial p}{\partial x} - \frac{\gamma}{\rho_0 (f^2 + \gamma^2)} \frac{\partial p}{\partial y}$$
$$U_t = \theta_{uy} D_y P_t + \theta_{ux} D_x P_t + \epsilon_u$$
$$V_t = \theta_{vx} D_x P_t + \theta_{vy} D_y P_t + \epsilon_v$$

What is the uncertainty in the winds? (Milliff et al., 2011)

Posterior distributions of winds from a Bayesian Hierarchical Model (Milliff et al., 2011)

The Ocean Ensemble Forecast with BHM winds (Pinardi et al., 2011)

10F at spread The forecast

-10

-15

-20

c) ECMWF 2

e) ECMWF 3

ECMWF Ensemble Prediction System (EPS) forcing is not effective to produce flow field changes at the mesoscales

BHM-SVW ensemble

Intermediate conclusions

- Temperature and salinity vertical error structure is largely connected to uncertainties in wind forcing
- Sea surface height error largely connected to mesoscale eddies position and strength
- Background error covariance should be obtained by perturbing winds in addition to simple random-like perturbation as in traditional EKF literature (Evensen, 2003)

High frequency error covariance matrix estimates with BHM (Dobricic et al., QJRMS, 2015)

- Estimate with a Bayesian Hierarchical Model (BHM) the time varying vertical error covariance matrix C by using misfits (d) and model stand. dev. (q) for T,S
- To estimate the error covariance we use a Bayesian Hierarchical Model (BHM) approach:
 - Data stage model
 - Process model
 - Parameter models

High frequency error covariance matrix estimates with BHM

- Data stage: $q_t | e_t \sim N(H_{qt}e_t, \Sigma_{qt})$ $d_t | e_t \sim N(H_{dt}e_t, \Sigma_{dt})$
- Process model: the vertical structure is given by the seasonal vertical EOFs but we estimate with an AR model 5-days amplitudes (Beta) $e_t = V_{t_s}\beta_t + \eta_t \dots; \quad \eta_t \sim N(0, \tau_t I) \quad \beta_t \approx N(0, \Lambda_t \Gamma_t \Gamma_t^T \Lambda_t)$
- Finally we can write B_{V_t} as: $B_{Vt} = V_{ts} \Lambda_t \Gamma_t \Gamma_t^T \Lambda_t V_{ts} + \tau_t I$

The data stage sets

The high frequency error covariance matrix

OLD SEASONAL winter C

a) % SS TS S 70-60 50 40 ST T 30-20 60 80 10 20 30 40 50 70 90 0.009 0.012 0.015 0.018 -0.0030.003 0.006

10 Feb, 2006 C from BHM

Improvements on the assimilation due to high frequency error covariance

Green background Black observation Blue old method Red BHM method

Conclusions

- An operational ocean 3DVAR assimilation system has been used to study analysis errors, forecast errors and different choices of background error covariance matrices
- Model improvements still provide the major source of improvements for analyses
- Errors in Temp and salinity peak between the 20-100 meter layer and vary seasonally mainly due to atmospheric forcing errors
- Ocean Ensemble forecasting with BHM winds offer a way to quantify the short term forecasting uncertainties
- High frequency background vertical covariance matrix can be constructed from model variance information and misfits and it improves the model analyses

SIMAI Conference 8 July 2014