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1. DART 2.0 Highlights

F Able to handle much larger model states. This is needed for higher-
resolution and/or strongly-coupled DA with multiple components. Distribut-
ing the model state across all tasks during the entire filter run means no
single task must store the entire state at any time.

F One-sided MPI communication allows tasks to request remote data items
from other tasks without interrupting their execution or arranging which
data items will be needed in advance.

F Computing the forward operators for all ensemble members at the same
time leads to code that vectorizes better.

F Native netCDF support eliminates a conversion step that translated be-
tween netCDF model files and a DART binary format file. This also re-
duces the high-water mark for disk requirements.

F Ensemble data can be read and distributed across all tasks on a variable-
by-variable basis, reducing the maximum memory requirements.

F Diagnostic state space files are now written in parallel with state-space
restart files, resulting in faster I/O and lower memory requirements.

F Support for externally-computed forward observation operators.
F Support for per-observation-type localization radii.

2. DART is ...

The Data Assimilation Research Testbed (DART) is an open source commu-
nity software facility for ensemble data assimilation developed at the National
Center for Atmospheric Research (NCAR). DART works with a wide variety
of climate and weather models and observations and has been free and pub-
lically available for more than 10 years. Building an interface between DART
and a new model does not require an adjoint and generally requires no mod-
ifications to the model code. DART works with dozens of models of varying
complexity, including (but not limited to):
• weather models, e.g. WRF, COAMPS, COSMO, MPAS Atmosphere,
• components of climate models, e.g. CAM, POP, CLM, WACCM, MPAS

Ocean, MITgcm-Ocean, GCCOM, ROMS, JULES, FESOM, CICE5,
• atmospheric chemistry models, e.g. CAM-CHEM, WRF-CHEM,
• ionosphere/thermosphere models, e.g. TIEGCM, GITM,
• low-order and simple research models

DART assimilates a wide variety of observation types including:
• temperature, winds, moisture from NCEP, MADIS, and SSEC,
• total precipitable water, radar observations, radio occultation observations

from GPS satellites,
• ocean temperature and salinity from the World Ocean Database,
• land observations such as snow cover fraction, ground water depth, tower

fluxes, cosmic ray neutron intensity, and microwave brightness tempera-
ture observations.

DART provides both state-of-the-art ensemble data assimilation capabilities
and an interactive educational platform to researchers and students.

*** *
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Figure 1: Schematic for a toy ensemble size of 3.
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http://www.image.ucar.edu/DAReS/DART has information
about how to download DART, the DART educational materi-
als, and how to contact us.
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4. Motivation for DART 2.0

4.1 Data Layout
One of the challenges for assimilation with truly massive geophysical models
is the data layout. Here is a simple example using 4 ensemble members and
4 processing elements (PEs). Each PE is a separate color, a representative
observation location is represented by the red star, and some hypothetical
area expected to be influenced by the observation is outlined in red.
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Figure 2: Two possibilities for data layouts. Left: ‘Whole State’. Each ensem-
ble member exists exclusively on a single processing element (PE). Right:
‘Distributed’. Each ensemble member is randomly distributed over multiple
PEs. Both layouts have advantages and disadvantages and an expensive
data transpose is required to go between layouts.

Both data layouts were used in the first version of DART: one for forward
operators and one for the assimilation phase.

4.1.1 Characteristics of Whole State Layout

• If each PE has a complete state, forward operators require no communi-
cation.

• Forward operators for all ensemble members are computed in parallel.

• However, it is not memory scalable and cannot effectively exploit PE
counts greater than the ensemble size.

• Additionally, newer architectures have large numbers of PEs with less
memory per PE.

4.1.2 Characteristics of the Distributed Layout

• Each processing element (PE) stores all ensemble copies of a subset of
the model state.

• All ensemble members for a state variable are on one PE.

• Can compute state mean, variance without communication.

• Forward operators probably require communication.

• All increments are computed in parallel.

• One PE broadcasts observation increments.

• Models frequently use a ‘block’ style
layout as shown here. However,
load balancing is an issue. PE4
has lots of work, PE1 has none.
‘Randomly’ distributing the ensem-
ble states is likely to result in a
well load-balanced system at the ex-
pense of increased communication
to compute the forward operators.
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Anderson, J. and N. Collins, 2007: Scalable Implemen-
tations of Ensemble Filter Algorithms for Data Assimila-
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Figure 3: Two data layouts. Left: whole state vectors are collected on each
PE, up to the number of ensemble members. Right: parts of each of the en-
semble of state vectors are distributed across all PEs. The more uniform use
of memory as in the right panel is a key to efficient computation of forward
operators in DART 2.0.

5. MPI2 one-sided communication

The previous implementation of DART required an all-to-all data transpose of
the model state. DART 2.0 replaces local array access with off-core memory
retrieval using passive target MPI2 one-sided communication. This removes
a previous hard limit on the maximum problem size. The use of one-sided
communication allows any task to request data from another task on demand
without needing to sychronize.
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Figure 4: P3 needs data from other PEs for computations. With MPI2 one-
sided communication the other processes are not interrupted. By using more
PEs each PE has fewer observations to manage. The forward operator for
all ensemble members is computed at once so the code vectorizes better.

5.0.1 Impact to Code

Most user-visible changes look like the following excerpt from the
lorenz 96/model mod.f90. Note that the new operation vectorizes.

Old: (the ensemble state is in array ‘x’)
obs_val = (1.0 - lctnfrac) * x(lower_index) + lctnfrac * x(upper_index)

New:
x_lower(:) = get_state(lower_index, state_handle)
x_upper(:) = get_state(upper_index, state_handle)
expected_obs(:) = (1.0 - lctnfrac) * x_lower(:) + lctnfrac * x_upper(:)

6. Performance of DART 2.0

A series of tests were performed on NCAR’s Yellowstone with the Weather
Research and Forecasting model (WRF) with 50 ensemble members and
54000 observations. Each ensemble member has a state of 184 million el-
ements, which is approximately 74 GB. Yellowstone has Intel Sandy Bridge
processors, a Mellanox InfiniBand, 25 GB of user-usable memory per node,
and 8 dual-socket cores for 16 CPUs per node.
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Figure 5: Left: strong memory scaling for DART 2.0 for a large WRF model.
Right: Job core-hour cost almost flat as number of nodes increases. Adding
more cores results in a corresponding decrease in wall-clock time.

6.1 Native netCDF support for I/O
DART 2.0 directly reads and writes netCDF model restart files. Since
netCDF is such a common format, this eliminates the need for most mod-
els to convert model restarts to a DART format. This reduces the complexity
of the cycling scripting and reduces the high-water amount of disk storage
required. Models that do not use netCDF will still need conversion routines.
Diagnostic files have always been in netCDF and will continue to be so. An-
cillary files for things like inflation values are also now in netCDF rather than
the old DART restart file format.
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Figure 6: Left: existing pattern that requires conversion of the model in-
put/output to an intermediate DART format. Right: new pattern for models
that use netCDF files for I/O. There is no need for specific DART restart files.

7. ROMS with DART 2.0

Andrew Moore (ammoore@ucsc.edu)
Hernan Arango (arango@marine.rutgers.edu)
Chris Edwards (cedwards@ucsc.edu)
DART-ROMS is being developed as part of a multi-institute project funded
by NOPP with the primary aim of coupling ROMS to COAMPS. The coupled
ROMS-COAMPS model will capitalize on the data assimilation capabilities
of the two models: firstly through DART-COAMPS, and secondly via the 4D-
Var capabilities of the two models. While the primary focus of the NOPP
project is to understand intraseasonal variability in the Indian Ocean, DART-
ROMS is undergoing initial development and testing using an existing tried-
and-trusted test case, namely the circulation along the North American west
coast. In the example presented here, (Figures 7,8) a low-resolution version
(30 km) of the ROMS test case is represented and is forced in uncoupled
mode by surface fluxes derived from COAMPS fields. Real observations of
temperature and salinity from a variety of satellite and in situ platforms were
assimilated into ROMS using the prototype DART-ROMS driver.
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Figure 7: Left: Ensemble mean temperatures of the upper 10 meters.
Right: Ensemble mean of the innovations for the temperature.
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Figure 8: Left: Root-mean-squared-error (RMSE) and totalspread (the
square root of the pooled variance of the observation and the ensemble)
for the sea surface height. ‘Error’ is defined to be the difference between the
observation and the ensemble mean. Right: RMSE and totalspread for all
salinity observations between 10 m and 20 m deep.

8. TerrSysMP

Prabhakar Shrestha (pshrestha@uni-bonn.de)
TerrSysMP was developed within the Collaborative Research Center TR32
to improve understanding of patterns of energy, water and carbon fluxes
and feedbacks in the terrestrial system. TerrSysMP is a modular platform,
which uses an external coupler (OASIS3/OASIS3-MCT) and three com-
ponent models for the atmosphere (Consortium for Small-Scale Modeling;
COSMO), land surface (the NCAR Community Land Model; CLM 3.5) and
groundwater (ParFlow). The test configuration for a weakly coupled DA ex-
periment with TerrSysMP/DART is a periodic 30km domain. OSSE’s are
being carried out as a preliminary step toward strongly coupled DA.

Figure 9: Left: Schematic of the TerrSysMP system. Right: A vertical cross-
section of the model domain. Of particular interest for strongly coupled DA
is the localization across the model boundaries.

9. FESOM Marmara Sea OSSE

Ali Aydogdu (ali.aydogdu@cmcc.it)
An unstructured mesh ocean model (FESOM) is interfaced with DART for
an ensemble data assimilation system in the Turkish Straits System. Syn-
thetic temperature and salinity observations are assimilated along the tracks
of the ferries in the eastern Marmara Sea with a six-hour assimilation cycle.
There are 30 ensemble members using a horizontal and vertical localization
halfwidths of ≈3 km and ≈25 m respectively. The observation temperature
and salt error variances are 0.5 ◦C and 0.25 psu, respectively.
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Figure 10: The unstructured mesh and the ferry tracks for a small portion of
the study area. Synthetic observations were created for every location of the
ferries at 1 minute intervals. All observation locations were at 5m depth.

Figure 11 compares the RMS of salinity difference (psu) between the prior
ensemble mean and the nature run in the first 10 m of the water column af-
ter the 16th assimilation cycle. The experiment with assimilation shows an
improvement in the eastern and central basin.

Figure 11: Left: Assimilation Run. RMSE of the ensemble mean and the
true state of the salinity after 16 assimilation cycles (4 days). Right: No As-
similation Run. RMSE of the ensemble mean and the true state of the salinity
at the same assimilation cycle. Note that gray denotes a larger difference.

10. CICE5 with DART 2.0

Cecilia Bitz (bitz@atmos.washington.edu)
Yongfei Zhang (yz4362@atmos.washington.edu)
Perfect model observing system simulation experiments (OSSEs) are con-
ducted to investigate data assimilation and post-processing methods via
DART/CICE51. The goal is to improve sea ice thickness (SIT), which is a
crucial state for sea ice forecast. Experiments assimilating synthetic obser-
vations of sea ice concentration (SIC), sea ice age (AGE), and SIT are com-
pared with a free run. Figure 12 shows that SIC-only assimilation performs
well along the ice edges but not in the central Arctic. The joint assimilation of
SIC and SIT removes SIT error almost everywhere; however, SIT satellite ob-
servations are not readily available. Promisingly, assimilating AGE together
with SIC improves SIT simulation.

Figure 12: Left: RMSE of the SIT when assimilating SIC only. Middle: RMSE
of the SIT when assimilating both SIC and AGE. Right: RMSE of the SIT
when assimilating both SIC and SIT. The units are meters. Typical sea ice
thickness values are 1-3 meters.

1. The Los Alamos Sea Ice Model is often referred to as the Community Ice CodE (CICE).
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