

Assimilating Observations with Spatially and Temporally Correlated Errors in a Global Atmospheric Model

Jeffrey Anderson, NCAR Data Assimilation Research Section

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases.

EGU, 20 Apr., 2016

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases. Vary uncorrelated error variance, 0.01

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases. Vary uncorrelated error variance, 0.1

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases. Vary uncorrelated error variance, 1.0

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases. Vary uncorrelated error variance, 10.0

1D Linear Exponential Growth Model

True trajectory is always 0. Evolution is $x_{t+1} = 1.1x_t$ Perturbations grow exponentially in time.

Assimilating Correlated Observations

1D Exponential Growth Model Results

Exact Smoother Result. Can't do better than this.

CAR

1D Exponential Growth Model Results

EAKF Poor Unless Uncorrelated Error Dominates

CAR

Two Types of Difference Observations

EGU, 20 Apr., 2016

1D Exponential Growth Model Results

Exact Unlinked Difference Obs Much worse.

1D Exponential Growth Model Results

EAKF is nearly exact for Unlinked Difference Obs.

growth= 0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000

1D Exponential Growth Model Results

Exact linked Difference Obs Nearly Identical to Analytic.

1D Exponential Growth Model Results

EAKF Linked Diff. Obs. Good when correlated error dominates.

growth= 0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000

CAR

1D Exponential Growth Model Results

Comparison to Just Using Raw Observations

growth= 0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000

CAR

Lorenz 63 Model

Lorenz 63 Model

L63 Results, Linked Difference Obs

3 Instruments

5 ensemble members. Adaptive inflation. Observations every 6 model timesteps.

L63 Results, Linked Difference Obs

3 Instruments

5 ensemble members. Adaptive inflation. Observations every 6 model timesteps.

L63 Summary

- Difference obs better unless uncorrelated error variance dominates.
- Improvement greater for single instrument.
- Ensembles often under-dispersive (what a surprise!).

Lorenz 96 Model, 40-variables

Observing System 1 40 Instruments. Each has own correlated error.

Lorenz 96 Model, 40-variables

L96 Results, Linked Difference Obs

40 Instruments

10 ensemble members. Adaptive inflation, 0.2 halfwidth localization. Observations every model timestep.

L96 Results, Linked Difference Obs

40 Instruments

10 ensemble members. Adaptive inflation, 0.2 halfwidth localization. Observations every model timestep.

L96 Results, Linked Difference Obs

- Difference obs better unless uncorrelated error variance dominates.
- Improvement much greater for single instrument.
- Ensembles often over-dispersive.
- Dealing with time correlation harder than space correlation.

30x60 horizontal grid, 5 levels.

Surface pressure, temperature, wind components. 28,800 variables.

Low-Order Dry Dynamical Core: Observations

Assimilate once per day. 0.2 radian localization. Observe each surface pressure grid point. Uncorrelated obs error variance 100 Pa.

Low-Order Dry Dynamical Core: Observations

Uncorrelated obs error variance 100 Pa.

Correlated obs error along 'simulated polar orbiter track'. Vary ratio of correlated to uncorrelated obs error variance.

Low-Order Dry Dynamical Core: PS Results

Linked difference better for large correlated error. Standard better for small correlated error.

Low-Order Dry Dynamical Core: T Results

Linked difference better for large correlated error. Standard better for small correlated error.

PS RMSE Structure: Large Uncorrelated Error, Ratio 4

Surface Pressure RMSE (Pascals)

PS RMSE Structure: Moderate Uncorrelated Error, Ratio 1

Surface Pressure RMSE (Pascals)

PS RMSE Structure: Small Uncorrelated Error, Ratio 1/4

Surface Pressure RMSE (Pascals)

T RMSE Structure: Small Uncorrelated Error, Ratio 1/4

Level 3 Temperature RMSE (K)

Low-Order Dry Dynamical Core Summary

- Linked difference obs better for large correlated error.
- Linked difference not sensitive to correlated error size.
- Adaptive inflation struggles with large correlated error.
- Could use base approach for uncorrelated obs, difference for correlated error obs.
- For example, base for sondes, difference for radiances.
- Difference obs allows assimilating before knowing correlated error characteristics.

Learn more about DART at:

www.image.ucar.edu/DAReS/DART

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., Arellano, A., 2009: *The Data Assimilation Research Testbed: A community facility.* BAMS, **90**, 1283—1296, doi: 10.1175/2009BAMS2618.1

