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1. DART Manhattan Release Highlights

F Able to handle much larger model states. This is needed for higher-
resolution and/or strongly-coupled DA with multiple components. Distribut-
ing the model state across all tasks during the entire filter run means no
single task must store the entire state at any time.

F One-sided MPI communication allows tasks to request remote data items
from other tasks without interrupting their execution or arranging which
data items will be needed in advance.

F Computing the forward operators for all ensemble members at the same
time leads to code that vectorizes better.

F Native netCDF support eliminates a conversion step that translated be-
tween netCDF model files and a DART binary format file. This also re-
duces the high-water mark for disk requirements.

F Ensemble data can be read and distributed across all tasks on a variable-
by-variable basis, reducing the maximum memory requirements.

F Diagnostic state space files are now written in parallel with state-space
restart files, resulting in faster I/O and lower memory requirements.

F Support for externally-computed forward observation operators.
F Support for per-observation-type localization radii.

2. DART is ...

The Data Assimilation Research Testbed (DART) is an open source commu-
nity software facility for ensemble data assimilation developed at the National
Center for Atmospheric Research (NCAR). DART works with a wide variety
of climate and weather models and observations and has been free and pub-
lically available for more than 10 years. Building an interface between DART
and a new model does not require an adjoint and generally requires no mod-
ifications to the model code. DART works with dozens of models of varying
complexity, including (but not limited to):
•weather models, e.g. WRF, COAMPS, COSMO, MPAS Atmosphere,
• components of climate models, e.g. CAM, POP, CLM, WACCM, MPAS

Ocean, MITgcm-Ocean, GCCOM, ROMS, JULES, FESOM, CICE5,
• atmospheric chemistry models, e.g. CAM-CHEM, WRF-CHEM,
• ionosphere/thermosphere models, e.g. TIEGCM, GITM, WACCMX
• low-order and simple research models.

DART assimilates a wide variety of observation types including:
• temperature, winds, moisture from NCEP, MADIS, and SSEC,
• total precipitable water, radar observations, radio occultation observations

from GPS satellites,
• ocean temperature and salinity from the World Ocean Database,
• land observations such as snow cover fraction, ground water depth, tower

fluxes, cosmic ray neutron intensity, microwave brightness temperature,
and satellite brightness temperature.

DART provides both state-of-the-art ensemble data assimilation capabilities
and an interactive educational platform to researchers and students.

*** *
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Figure 1: Schematic for a toy ensemble size of 3.
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http://www.image.ucar.edu/DAReS/DART has information
about how to download DART, the DART educational materi-
als, and how to contact us.
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4. Improved Adaptive Inflation

Author: el Gharamti
Ensemble data assimilation algorithms, especially with biased models, rely
on algorithms that inflate the ensemble to avoid loss of spread. An enhanced
adaptive algorithm that automatically determines appropriate spatially- and
temporally-varying inflation has been developed, significantly improving on
the previous method (‡ Anderson, 2009). The new method:

1. Models the difference between the ensemble mean forecast and the ob-
served value as a random variable. This modifies the variance of the infla-
tion likelihood by a factor of N−1

e (ensemble size), such that the distribution
is slightly shifted to larger distances.

2. Models the prior inflation as an inverse gamma (IG) distribution instead of
Gaussian (N). This restricts the sampling of the inflation to positive values
only.

The benefits of these enhancements are two-fold. The modified likelihood is
expected to behave better in the case of a very sparse observational network
and/or assimilating observations with large uncertainties. The use of an in-
verse gamma prior limits the magnitude of deflation, should it occur. Results
for numerical weather prediction using a 2◦ Community Atmosphere Model
(CAM4) assimilating wind and temperature observations from radiosondes,
ACARS, AIRCRAFT, plus GPS radio occultation observations are shown be-
low.

Figure 3: Top left panel: Bayesian update of the inflation for a scalar case.
The distributions (PDFs) refer to the prior, the likelihood and the posterior.
Thick curves represent PDFs of the enhanced scheme. Top right panel:
Difference between the original and the enhanced surface pressure infla-
tion maps on September 20, 2010. Bottom 8 panels: Difference between
original and enhanced, time-averaged, prior RMSE values as a function of
model height and geographical region (blue means the new inflation scheme
yields smaller RMSE). In the equations, λl = (enhanced) inflation parame-
ter (∗ = old), NS = number of observations, NT = number of times, o = old
inflation, e = enhanced inflation.

‡ Anderson, J. L., 2009a: Spatially and temporally varying adaptive covari-
ance inflation for ensemble filters. Tellus A, 61, 72-83.

5. Sudden Stratospheric Warming in WACCMX

Authors: Pedatella, H.L. Liu, J. Liu
The Whole Atmosphere Community Climate Model has been eXtended ver-
tically to as high as ≈700 km (WACCMX). This enables the modeling of ther-
mospheric and ionospheric phenomena, such as the ionosphere variability
during sudden stratosphere warming events (SSW). WACCMX has been in-
terfaced to DART, enabling the use of data assimilation to evaluate the per-
formance of WACCMX in both model space and observation space. Fig. 4 is
an example of the latter, for Total Electron Content (TEC) as measured by the
Global Navigational Satellite System. TEC is not a model variable, and is not
assimilated in these experiments, but can be calculated by WACCMX+DART
for comparison against measured TEC. Assimilation of observations in the
lower atmosphere improves the forcing of the upper atmosphere, leading to
improved forecasts there (not shown).
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Figure 4: The total electron content at 75W longitude and 1800 local time on
successive days. Results shown are the WACCMX+DART forecast initialized
on January 15 (top panel) from the WACCMX+DART analysis (ensemble
mean) (middle panel), with ground-based GPS observations for comparison
(bottom panel). The dashed lines mark the peak of the SSW.

6. Sea Ice and Parameter Estimation

Authors: Zhang, Bitz

6.1 CICE5+DART: Real Observations
Retrievals of sea ice concentration (fraction of grid box covered by sea ice,
SIC) from SSM/I microwave observations using the Bootstrap method were
assimilated into CICE5+DART. The assimilation used adaptive inflation and
and a localization half-width of 0.05 radians. CICE5 tends to overestimate
sea ice along the ice edges and underestimate sea ice in the Central Arctic.
In winter, DA can significantly remove the edge bias but does not influence
the central Arctic as much. In summer, as the model ensemble becomes
more uncertain in the central Arctic, DA is able to reduce the biases there
too.

Observed No	Assimilation SIC	DA

Sea	ice	concentration	for	September	2001

Figure 5: Comparison of the September 2001 sea ice concentration (SIC)
as observed by SSM/I (left map), from a free run of the CICE5 model (center
map), and from a CICE5+DART assimilation using those same observations
(right map).

6.2 Parameter Estimation in a Perfect Model
Ensemble data assimilation can be used to generate estimates of model
parameters using the ’augmented state’ technique. Here the parameter
R snw, which contributes to snow albedo in the CICE5 model, is made
part of the model state vector. Then the assimilation of any relevant ob-
servations can modify the value of R snw to be more consistent with the

observations. This is illustrated in Fig. 6 using a “perfect model” experi-
ment, in which the true values of R snw and the model state are known,
but the assimilation is started with intentionally incorrect values. The as-
similation guides the value of R snw towards the true value. In parameter
tuning experiments using real observations, in which the truth is less well
known and the model is not perfect, the parameter may be guided to an
unacceptable value. That value may allow better agreement between the
model state and the observations, but violates the definition of the param-
eter. This points to the existence of model defects which should be fixed.
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Figure 6: In a “perfect model” assimilation, the distribution of values of
model parameter R snw initially has the wrong mean (heavy blue line) and
large spread among the ensemble members (vertical blue lines). Assimila-
tion of observations taken from a free run of CICE5 guides the distribution
towards the true value (red line) and reduces the uncertainty (spread).

7. FRAPPE and WRF-Chem

Author: Mizzi
The Front Range Air Pollution and Photochemistry Experiment (FRAPPE)
collected aircraft profile observations at six locations over the Colorado Front
Range during nine special observing periods between July 20 and July 29,
2014. We applied WRF-Chem+DART to FRAPPE starting on July 14, with
6-hr cycling and 30 ensemble members.
We conducted two experiments:
1. a control experiment where we assimilated only conventional meteorolog-

ical observations (”MET”),

2. a chemical data assimilation experiment where we assimilated MOPITT
CO retrieval profiles and the meteorology observations (”RETR”).

The left panel of Fig. 7 shows that RETR improved the 6-hr CO forecast
throughout the troposphere by ≈10% compared to MET. The right panels
show time series of the 6-hr forecast root mean square error (RMSE) and
bias. For both figures RETR shows improved results compared to MET.

Figure 7: Forecast skill improvements from applying WRF-Chem+DART to
the FRAPPE. The black curve shows the FRAPPE aircraft CO profile ob-
servations. The blue curves show corresponding results from the control
experiment where only conventional meteorology observations were assim-
ilated. The red curves show results from the chemical data assimilation ex-
periment where MOPITT CO retrieval profiles were assimilated together with
the meteorological observations. The left panel shows the time and hori-
zontal domain average CO profiles. The right panels show the domain root
mean square error (RMSE) and bias of the assimilated states relative to the
FRAPPE observations.

8. Variable Resolution MPAS+DART

Authors: Ha, Skamarock, Snyder

The Model for Prediction Across
Scales (MPAS) uses a global mesh
(grid) whose horizontal resolution
can vary continuously, minimizing
the difficulties of nested grid mod-
els. To see the effects of locally
enhanced resolution, we compare 5
day forecasts using a quasi-uniform
global mesh with resolution of ≈120
km (“x1”) and the same mesh with
resolution increased to ≈30 km over
CONUS (Fig. 8) (“x4”). Initial condi-
tions for each forecast are generated
by MPAS+DART ensemble data
assimilation† on the native mesh. We
assimilated all the conventional obser-
vations into a 96-member ensemble,
which enables ensemble forecasts
and robust conclusions.

Fig. 2. Grid resolutions in 120-30 km mesh (named “x4”), contouring every 30 km in solid
lines, superimposed over relative vorticity at 500 hPa (colored) at 36-h forecast valid at
2012-05-29 12:00:00 UTC.
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Figure 8: Resolution of the 120-30
km mesh (“x4”), contouring every 30
km.

8.1 5 Day Forecasts
The improvement in the forecasts due to using the variable resolution mesh
in the initial condition analyses and/or the forecasts is shown in Figure 9.
The forecasts are verified against the CONUS region of the NCEP final op-
erational global 1◦ analyses (FNL) twice per day, but only on alternating days.
The 5-day forecasts are improved more by using the refined mesh for both
the initial conditions and the forecast, than for just the forecast.

Fig. 10. Verification of MPAS forecasts from di↵erent analyses in terms of temperature at
500 hPa, with respect to the NCEP FNL analyses, over the a) CONUS b) globe c) Southern
Hemisphere and d) tropics. The rms errors are computed from May 28 to June 25, 2012,
twice daily (at 00Z and 12Z), every other day. The error averaged over 5-day forecasts is
shown for each experiment.
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Figure 9: When the NCEP FNL analyses are used for ICs (dashed), The
refined mesh (“x4”), 5-day forecast, temperature RMSE is smaller than the
uniform mesh (“x1”). When the forecasts start from refined mesh analyses
(solid) the improvement is even larger (red arrow). This is true for the whole
forecast period (a) and the entire troposphere (b).

8.2 Power Spectra of Ensemble Analysis Increments

The ability of the refined mesh fore-
casts to generate smaller RMSE can
be traced to the ability of their mesh
to better represent the observations,
which have no scale limitation. Fig-
ure 10 shows how far the assimila-
tion process pushes the model state
toward the observations for each spa-
tial scale within the CONUS region.
The analyses which use the refined
mesh (“x4.EnKF”) show much more
increment power at spatial scales from
≈700 to ≈240 km because the uni-
form mesh model state cannot repre-
sent the observations as well as the
refined mesh. Each curve is truncated
due to its inability to resolve structures
smaller than 2∆x.

Figure 10: Power spectra from as-
similations using quasi-uniform and
refined meshes.

† Ha, et al. 2017: Ensemble Kalman Filter Data Assimilation for the
Model for Prediction Across Scales (MPAS). Monthly Weather Review,
https://doi.org/10.1175/MWR-D-17-0145.1.


