Ensemble Data Assimilation for Observations with
Spatially and Temporally Correlated Errors
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Dealing with correlated observation error in ensemble filters.
1. ldealized correlated error.

2. Difference observations.

3. Explictly modeling instrument error.

4. Comparing the two methods.

5. Conclusions and recommendations.
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Most Observations Have Correlated Obs. Errors

Examples:
» Satellite radiances: instrument bias and aging.

» In situ soil moisture: instrument plus siting
representativeness.

» Rainfall: gauge deficiencies plus siting.
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Observation Error Time Series

Example: Correlated Error AR1 with Variance 1.
Single Step Cov 0.999. Fixed for all cases.

Uncorrelated Error Variance 0.01
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Observation Error Time Series

Example: Correlated Error AR1 with Variance 1.
Single Step Cov 0.999. Fixed for all cases.
Vary uncorrelated error variance, 0.01

Uncorrelated Error Variance 0.01
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Observation Error Time Series

Example: Correlated Error AR1 with Variance 1.
Single Step Cov 0.999. Fixed for all cases.
Vary uncorrelated error variance, 0.1

Uncorrelated Error Variance 0.1

—— Total Error
— Corr_elated _Error
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Observation Error Time Series

Example: Correlated Error AR1 with Variance 1.
Single Step Cov 0.999. Fixed for all cases.
Vary uncorrelated error variance, 1.0

Uncorrelated Error Variance 1
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Observation Error Time Series

Example: Correlated Error AR1 with Variance 1.
Single Step Cov 0.999. Fixed for all cases.
Vary uncorrelated error variance, 10.0
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Possible approaches to dealing with correlated obs error

» Ignore it (common),
» Add parameters to forward operator, estimate them,
» Model it explicitly (various ways),

» Time difference observations.
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1D Linear Exponential Growth Model

True trajectory is always O.

Evolution is x
Perturbations grow exponentially in time.
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Dealing with correlated observation error in ensemble filters.
1. ldealized correlated error.

2. Difference observations.

3. Explictly modeling instrument error.

4. Comparing the two methods.

5. Conclusions and recommendations.
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Assimilating Correlated Observations

Obs1 Obs2| | Obs3| | Obs4| | Obs5| | Obsb6
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1D Exponential Growth Model Results

Exact Smoother Result. Can’t do better than this.

growth=0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000
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1D Exponential Growth Model Results

EAKF Poor Unless Uncorrelated Error Dominates

growth=0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000
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RMSE ; SPREAD
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Two Types of Difference Observations

Obs1 Obs2| | Obs3| | Obs4| | Obs5| | Obsb6
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Unlinked Difference Observations

Unlinked Unlinked Unlinked
Diff 1 Diff 3 Diff 5

Obs1 Obs2| | Obs3| | Obs4| | Obs5| | Obsb6
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1D Exponential Growth Model Results

Exact Unlinked Difference Obs Much worse.

growth=0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000
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Uninked Difference Observations

Var ~ 207
Unlinked Unlinked Unlinked
Diff 1 Diff 3 Diff 5

Obs1 Obs2| | Obs3| | Obs4| | Obs5| | Obsb6
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Uninked Difference Observations

Cov(t,t + A) ~ ()
Var ~ 207
Unlinked Unlinked Unlinked
Diff 1 Diff 3 Diff 5

Obs1 Obs2| | Obs3| | Obs4| | Obs5| | Obsb6
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1D Exponential Growth Model Results

EAKEF is nearly exact for Unlinked Difference Obs.

growth=0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000
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Linked Difference Observations

Linked Linked Linked
Diff 1 Diff 3 Diff 5
Obs1 Obs2| | Obs3| | Obs4| | Obs5| | Obsb6
Linked Linked
Diff 2 Diff 4
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1D Exponential Growth Model Results

Exact linked Difference Obs Nearly Identical to Analytic.

growth=0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000

10

10"

Exact
""""" —— Standard RMSE
- - -Standard SD

* Exact Unlinked
—— Unlinked RMSE
— Unlinked SD

o Exact Linked

RMSE ; SPREAD

-4 -2 0 2
10 10 10 10
Uncorrelated|Error variance

hNCAR ] ( CAHMDA VII, 21 Aug. 2017




Linked Difference Observations

Var ~ 207
Linked Linked Linked
Diff 1 Diff 3 Diff 5
Obs1 Obs2| | Obs3| | Obs4| | Obs5| | Obsb6
Linked Linked
Diff 2 Diff 4
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Linked Difference Observations

Cov(t,t+1)~—0’

Var ~ 207
Linked Linked Linked
Diff 1 Diff 3 Diff 5
Obs1 Obs2|/| Obs3| | Obs4| | Obs5| | Obsb6
Linked Linked
Diff 2 Diff 4
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Linked Difference Observations

Cov(t,t+1)~—0’

Cov(others)~ 0

2
Var =20

Linked Linked Linked
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Obs1 Obs2|/| Obs3| | Obs4| | Obs5| | Obsb6
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1D Exponential Growth Model Results

EAKF Linked Diff. Obs. Good when correlated error dominates.

growth=0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000
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1D Exponential Growth Model Results

Comparison to Just Using Raw Observations
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Lorenz 63 Model

Observing System 1
3 Instruments.

Each has own
correlated error.
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Lorenz 63 Model

Observing System 2
1 Instrument
measures X,Yy,z each
time.
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L63 Results, Linked Difference Obs

3 Instruments

Global Posterior
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5 ensemble members.
Adaptive inflation.
Observations every 6 model timesteps.
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L63 Results, Linked Difference Obs

3 Instruments 1 Instrument
; Global Posterior Global Posterior
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L63 Summary

> Difference obs better unless uncorrelated error variance dominates.
» Improvement greater for single instrument.

» Ensembles often under-dispersive (what a surprise!).
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Lorenz 96 Model, 40-variables

Observing System 1
40 Instruments.
Each has own
correlated error.
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Lorenz 96 Model, 40-variables

Observing System 2
1 instrument
measures all 40
variables each time.

18 17 16 15 14
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.96 Results, Linked Difference Obs

40 Instruments

Global Posterior
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10 ensemble members.

Adaptive inflation, 0.2 halfwidth localization.

Observations every model timestep.
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.96 Results, Linked Difference Obs

40 Instruments 1 Instrument
; Global Posterior Global Posterior
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.96 Results, Linked Difference Obs

» Difference obs better unless uncorrelated error variance dominates.
» Improvement much greater for single instrument.
» Ensembles often over-dispersive.

» Dealing with time correlation harder than space correlation.
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Low-Order Dry Dynamical Core

Surface Pressure To + 0 Hours

Latitude

90 180 270
Longitude

Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.
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Latitude
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Low-Order Dry Dynamical Core

Surface Pressure T0 + 12 Hours

90 180
Longitude

Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.




Low-Order Dry Dynamical Core

Surface Pressure T0 + 24 Hours
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Latitude

180
Longitude

Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.
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Low-Order Dry Dynamical Core

Surface Pressure T0 + 36 Hours

Latitude

3
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J .
90 180 270
Longitude

Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.
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Low-Order Dry Dynamical Core

Surface Pressure T0 + 48 Hours
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Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.
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Low-Order Dry Dynamical Core

Surface Pressure T0 + 60 Hours

r

Latitude

44i;illh-!!.
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Longitude

Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.
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Low-Order Dry Dynamical Core

Surface Pressure T0 + 72 Hours

N
(6)]

~

Latitude

90 180 270
Longitude

Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.
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Low-Order Dry Dynamical Core

Surface Pressure T0 + 84 Hours

Latitude

\’bt

90 1 80
Longitude

Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.
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Low-Order Dry Dynamical Core

Surface Pressure T0 + 96 Hours

Latitude

-
,\ \“ - =

90 1 80
Longitude

Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.
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Low-Order Dry Dynamical Core

Surface Pressure T0 + 108 Hours

Latitude

\,“

90 1 80 0
Longitude

Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.
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Low-Order Dry Dynamical Core: Grid

Location of 30 x 60 Model Grid

— e W
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Longitude
30x60 horizontal grid, 5 levels.

Surface pressure, temperature, wind components.
28,800 variables.
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Low-Order Dry Dynamical Core: Observations

Location of 30 x 60 Model

Grid

R HgRESeectEsent - -
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] fiF s

90 180
Longitude

270

Assimilate once per day. 0.2 radian localization.
Observe each surface pressure grid point.
Uncorrelated obs error variance 100 Pa.
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Low-Order Dry Dynamical Core: Observations

Location of 30 x 60 Model Grid

45 - : i) ILMM
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9.0 1;30 HHH2%0
Longitude
Uncorrelated obs error variance 100 Pa.
Correlated obs error along ‘simulated polar orbiter track’.
Vary ratio of correlated to uncorrelated obs error variance.
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Low-Order Dry Dynamical Core: PS Results

Global Prior Surface Pressure
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Linked difference better for large correlated error.
Standard better for small correlated error.
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Low-Order Dry Dynamical Core: T Results

Global Prior Temperature
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- ¢ -Base Spread ]
—e— Linked Diff Obs RMSE ]
- ¢ - Linked Diff Obs Spread |

RMSE; Spread

" " " MR | 1
10
/ﬁ/related / C)}Aed PS Sbs Error V%

o

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
rvatiol rvatiol Observation #

Linked difference better for large correlated error.
Standard better for small correlated error.
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PS RMSE Structure: Large Uncorrelated Error, Ratio 4

Surface Pressure RMSE (Pascals)

Latitude

Latitude

0 90 180 270

ENCAR (NS CAHMDA VI, 21 Aug. 2017

Base errors largest
In storm tracks.

Linked difference
errors largest in
broad tropical band.




PS RMSE Structure: Moderate Uncorrelated Error, Ratio 1

Surface Pressure RMSE (Pascals)

N Base errors largest
In storm tracks.
5 Linked difference

errors largest in
broad tropical band.

0 90 180 270 360
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PS RMSE Structure: Small Uncorrelated Error, Ratio 1/4

Surface Pressure RMSE (Pascals)

N Base errors largest
In storm tracks.
5 Linked difference

errors largest in
broad tropical band.

0 90 180 270
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T RMSE Structure: Small Uncorrelated Error, Ratio 1/4

Level 3 Temperature RMSE (K)

N Base errors largest
In tropics.
Level 3 Temperature RMSE (K)
5 Linked difference
errors have similar

pattern.

90 180 270 360
Longitude
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Low-Order Dry Dynamical Core Summary

Linked difference obs better for large correlated error.
Linked difference not sensitive to correlated error size.
Adaptive inflation struggles with large correlated error.

Could use base approach for uncorrelated obs,
difference for correlated error obs.

For example, base for sondes, difference for radiances.

Difference obs allows assimilating before knowing
correlated error characteristics.
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Dealing with correlated observation error in ensemble filters.
1. ldealized correlated error.

2. Difference observations.

3. Explictly modeling instrument error.

4. Comparing the two methods.

5. Conclusions and recommendations.
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Modeling Correlated Observation Error

Error in examples is AR1:

(other types may need other methods).
Given correlated error now, can predict it at later time.
Have ensemble of model state.

Also ensemble of correlated error for each instrument.

i I"\MICAR @ CAHMDA VI, 21 Aug. 2017



Modeling Correlated Observation Error

1. Forecast: Advance model & correlated error ensembles.
2. Forward operator (for each ensemble member):
Apply standard forward operator to state, H(x),
Add correlated error.
3. Observation Increments: Compute normally.
4. State variable update:
Use regression (ensemble Kalman gain) to update:
Model state variables,

Correlated observation variables.
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1D Exponential Growth Model Results

320 Member deterministic ensemble filter (EAKF) State
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1D Exponential Growth Model Results

320 Member deterministic ensemble filter (EAKF) State

Global Posterior
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1D Exponential Growth Model Results

320 Member deterministic ensemble filter (EAKF) State

Global Posterior
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1D Exponential Growth Model Results

320 Member deterministic ensemble filter (EAKF) State

Global Posterior
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Exact asymptotic solution can be computed.
Indistinguishable from 320 member ensemble.
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1D Exponential Growth Model Results

320 Member deterministic ensemble filter (EAKF) Obs. Error

Obs error estimates
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Exact asymptotic solution can be computed.
Indistinguishable from 320 member ensemble.
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1D Exponential Growth Model Results

Fails for small ensembles with large correlated error.
320 Member EAKF 20 Member EAKF

Global Posterior
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1D Exponential Growth Model Results

Fails for small ensembles with large correlated error.

Global Posterior
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Ensemble Filters Scale Poorly for Random Fields

Ensemble size > 1 is exact with no correlated obs error.
Random walk evolution of correlated error is a problem.
Can reduce this by reducing ‘randomness’ of ensemble.

AR1 series for observation error is: ¢ = ¢e,, +N0”mal(0903)

Given a posterior ensemble estimate of e at previous time:
Expected prior mean at next time is: E(e,)=¢E(e, )
Expected prior variance is: E[var( e,)|= ¢ E|var(e,)|+ o

‘Deterministic’ forecast for observation error:
‘Adjust’ ensemble to have exactly these statistics.
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1D Exponential Growth Model Results

Deterministic works with smaller ensembles. Used hereafter.

Nondeterm 20 Member

Global Posterior
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1D Exponential Growth Model Results

Try multiplicative inflation of state.

Optimal inflation gets large.
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Multiplicative inflation for
obs error ensemble is bad.
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1D Exponential Growth Model Results

Multiplicative inflation for state improves performance.
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Lorenz 96 Model, 40-variables

Observing System 1:
40 Instruments.
Each has own
correlated error.

o)

120- 50
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Lorenz 96 Model, 40-instruments

Global Posterior
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20 member EAKF.

Optimal inflation.

Localization halfwidth 0.2

Modeling obs error helps.
Spread is deficient.




Lorenz 96 Model, 40-variables

Observing System 2:
1 instrument
measures all 40
variables each time.

18 17 16 15 14
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Lorenz 96 Model, 1-instrument

Global Posterior
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20 member EAKF.

Optimal inflation.

Localization halfwidth 0.2

Modeling obs error helps.
Spread is better than
many instrument case.




Dealing with correlated observation error in ensemble filters.
1. ldealized correlated error.

2. Difference observations.

3. Explictly modeling instrument error.

4. Comparing the two methods.

5. Conclusions and recommendations.
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Lorenz 96 Model, 40-instruments

Time difference assimilation best for large correlated error.
Terrible for small correlated error.
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Lorenz 96 Model, 1-instrument

Time difference assimilation best for large correlated error.
Not bad for small correlated error.
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Dealing with correlated observation error in ensemble filters.
1. ldealized correlated error.

2. Difference observations.

3. Explictly modeling instrument error.

4. Comparing the two methods.

5. Conclusions and recommendations.
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Conclusions

* Modeling correlated obs error ‘optimal’ for large ensembile.
« Sampling error is a problem for small ensembles.

« Multiplicative state inflation can reduce this problem.

« Additive inflation for obs error may help?

« Time difference obs effective for large correlated error.

General things to keep in mind:
» Details of filtering problem determine best methods.
« Making models/filters more deterministic generally helps.
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Learn more about DART at:

[)ata
Assimilation

Research
Testbe&

www.image.ucar.edu/DAReS/DART

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., Arellano, A.,
2009: The Data Assimilation Research Testbed: A community facility.
BAMS, 90, 1283—1296, doi: 10.1175/2009BAMS2618.1
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