

Assimilating Observations with Spatially and Temporally Correlated Errors in a Global Atmospheric Model

Jeffrey Anderson, NCAR Data Assimilation Research Section

Nanjing DA Workshop, 29 Aug. 2017

Outline

Dealing with correlated observation error in ensemble filters.

- 1. Idealized correlated error.
- 2. Difference observations.
- 3. Explicitly modeling instrument error.
- 4. Comparing the two methods.
- 5. Conclusions and recommendations.

Most Observations Have Correlated Obs. Errors

Examples:

- Satellite radiances: instrument bias and aging.
- In situ soil moisture: instrument plus siting representativeness.
- Rainfall: gauge deficiencies plus siting.

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases.

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases. Vary uncorrelated error variance, 0.01

Nanjing DA Workshop, 29 Aug. 2017

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases. Vary uncorrelated error variance, 0.1

Nanjing DA Workshop, 29 Aug. 2017

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases. Vary uncorrelated error variance, 1.0

Nanjing DA Workshop, 29 Aug. 2017

Example: Correlated Error AR1 with Variance 1. Single Step Cov 0.999. Fixed for all cases. Vary uncorrelated error variance, 10.0

Possible approaches to dealing with correlated obs error

- Ignore it (common),
- > Add parameters to forward operator, estimate them,
- Model it explicitly (various ways),
- Time difference observations.

1D Linear Exponential Growth Model

True trajectory is always 0. Evolution is $x_{t+1} = 1.1x_t$ Perturbations grow exponentially in time.

Nanjing DA Workshop, 29 Aug. 2017

Outline

Dealing with correlated observation error in ensemble filters.

- 1. Idealized correlated error.
- 2. Difference observations.
- 3. Explicitly modeling instrument error.
- 4. Comparing the two methods.
- 5. Conclusions and recommendations.

Assimilating Correlated Observations

Nanjing DA Workshop, 29 Aug. 2017

1D Exponential Growth Model Results

Exact Smoother Result. Can't do better than this.

CAR

1D Exponential Growth Model Results

EAKF Poor Unless Uncorrelated Error Dominates

growth= 0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000

Nanjing DA Workshop, 29 Aug. 2017

Two Types of Difference Observations

Nanjing DA Workshop, 29 Aug. 2017

Nanjing DA Workshop, 29 Aug. 2017

1D Exponential Growth Model Results

Exact Unlinked Difference Obs Much worse.

growth= 0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000

Nanjing DA Workshop, 29 Aug. 2017

Nanjing DA Workshop, 29 Aug. 2017

1D Exponential Growth Model Results

EAKF is nearly exact for Unlinked Difference Obs.

growth= 0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000

CAR

Data Assimilation Research Festbed

Nanjing DA Workshop, 29 Aug. 2017

1D Exponential Growth Model Results

Exact linked Difference Obs Nearly Identical to Analytic.

Nanjing DA Workshop, 29 Aug. 2017

1D Exponential Growth Model Results

EAKF Linked Diff. Obs. Good when correlated error dominates.

growth= 0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000

Nanjing DA Workshop, 29 Aug. 2017

1D Exponential Growth Model Results

Comparison to Just Using Raw Observations

growth= 0.100000 mbias= 0.000000 phi= 0.999000 sigma= 0.044710 bias= 0.000000

Nanjing DA Workshop, 29 Aug. 2017

Error

CAR

Data Assimilation Research Testbed

Lorenz 63 Model

Lorenz 63 Model

Nanjing DA Workshop, 29 Aug. 2017

L63 Results, Linked Difference Obs

3 Instruments

5 ensemble members. Adaptive inflation. Observations every 6 model timesteps.

L63 Results, Linked Difference Obs

3 Instruments

5 ensemble members. Adaptive inflation. Observations every 6 model timesteps.

Nanjing DA Workshop, 29 Aug. 2017

L63 Summary

- Difference obs better unless uncorrelated error variance dominates.
- Improvement greater for single instrument.
- Ensembles often under-dispersive (what a surprise!).

Lorenz 96 Model, 40-variables

Observing System 1 40 Instruments. Each has own correlated error.

Lorenz 96 Model, 40-variables

L96 Results, Linked Difference Obs

40 Instruments

10 ensemble members. Adaptive inflation, 0.2 halfwidth localization. Observations every model timestep.

L96 Results, Linked Difference Obs

40 Instruments

10 ensemble members. Adaptive inflation, 0.2 halfwidth localization. Observations every model timestep.

Nanjing DA Workshop, 29 Aug. 2017

L96 Results, Linked Difference Obs

- Difference obs better unless uncorrelated error variance dominates.
- Improvement much greater for single instrument.
- Ensembles often over-dispersive.
- > Dealing with time correlation harder than space correlation.

30x60 horizontal grid, 5 levels.

Surface pressure, temperature, wind components. 28,800 variables.

Low-Order Dry Dynamical Core: Observations

Assimilate once per day. 0.2 radian localization. Observe each surface pressure grid point. Uncorrelated obs error variance 100 Pa.

Low-Order Dry Dynamical Core: Observations

Uncorrelated obs error variance 100 Pa.

Correlated obs error along 'simulated polar orbiter track'. Vary ratio of correlated to uncorrelated obs error variance.

Low-Order Dry Dynamical Core: PS Results

Linked difference better for large correlated error. Standard better for small correlated error.

Low-Order Dry Dynamical Core: T Results

Linked difference better for large correlated error. Standard better for small correlated error.

PS RMSE Structure: Large Uncorrelated Error, Ratio 4

Surface Pressure RMSE (Pascals)

PS RMSE Structure: Moderate Uncorrelated Error, Ratio 1

Surface Pressure RMSE (Pascals)

PS RMSE Structure: Small Uncorrelated Error, Ratio 1/4

Surface Pressure RMSE (Pascals)

T RMSE Structure: Small Uncorrelated Error, Ratio 1/4

Level 3 Temperature RMSE (K)

Base errors largest in tropics.

Low-Order Dry Dynamical Core Summary

- Linked difference obs better for large correlated error.
- Linked difference not sensitive to correlated error size.
- Adaptive inflation struggles with large correlated error.
- Could use base approach for uncorrelated obs, difference for correlated error obs.
- For example, base for sondes, difference for radiances.
- Difference obs allows assimilating before knowing correlated error characteristics.

Outline

Dealing with correlated observation error in ensemble filters.

- 1. Idealized correlated error.
- 2. Difference observations.
- 3. Explicitly modeling instrument error.
- 4. Comparing the two methods.
- 5. Conclusions and recommendations.

Modeling Correlated Observation Error

Error in examples is AR1:

(other types may need other methods).

Given correlated error now, can predict it at later time.

Have ensemble of model state.

Also ensemble of correlated error for each instrument.

Modeling Correlated Observation Error

Forecast: Advance model & correlated error ensembles.
 Forward operator (for each ensemble member):
 Apply standard forward operator to state, H(x),
 Add correlated error.

- 3. Observation Increments: Compute normally.
- 4. State variable update:

Use regression (ensemble Kalman gain) to update:

Model state variables,

Correlated observation variables.

320 Member deterministic ensemble filter (EAKF) State

Nanjing DA Workshop, 29 Aug. 2017

320 Member deterministic ensemble filter (EAKF) State

All results for 5000 steps after 1000 step spin-up.

Nanjing DA Workshop, 29 Aug. 2017

320 Member deterministic ensemble filter (EAKF) State

All results for 5000 steps after 1000 step spin-up.

320 Member deterministic ensemble filter (EAKF) State

Exact asymptotic solution can be computed. Indistinguishable from 320 member ensemble.

320 Member deterministic ensemble filter (EAKF) Obs. Error

Exact asymptotic solution can be computed. Indistinguishable from 320 member ensemble.

Fails for small ensembles with large correlated error. 320 Member EAKF 20 Member EAKF

Nanjing DA Workshop, 29 Aug. 2017

Fails for small ensembles with large correlated error. 10 Member EAKF 20 Member EAKF

Nanjing DA Workshop, 29 Aug. 2017

Ensemble Filters Scale Poorly for Random Fields

Ensemble size > 1 is exact with no correlated obs error. Random walk evolution of correlated error is a problem. Can reduce this by reducing 'randomness' of ensemble.

AR1 series for observation error is: $e_t = \phi e_{t-1} + Normal(0, \sigma_c^2)$

Given a posterior ensemble estimate of *e* at previous time: Expected prior mean at next time is: $E(e_p) = \phi E(e_u)$ Expected prior variance is: $E[var(e_p)] = \phi^2 E[var(e_u)] + \sigma_c^2$

'Deterministic' forecast for observation error:

'Adjust' ensemble to have exactly these statistics.

Deterministic works with smaller ensembles. Used hereafter.

Try multiplicative inflation of state.

10 Member inflated

Global Posterior

Multiplicative inflation for obs error ensemble is bad.

Nanjing DA Workshop, 29 Aug. 2017

Multiplicative inflation for state improves performance.

10 Member

10 Member inflated

Lorenz 96 Model, 40-variables

Observing System 1: 40 Instruments. Each has own correlated error.

Lorenz 96 Model, 40-instruments

20 member EAKF.

Optimal inflation.

Localization halfwidth 0.2

Modeling obs error helps. Spread is deficient.

Nanjing DA Workshop, 29 Aug. 2017

Lorenz 96 Model, 40-variables

Lorenz 96 Model, 1-instrument

20 member EAKF.

Optimal inflation.

Localization halfwidth 0.2

Modeling obs error helps. Spread is better than many instrument case.

Outline

Dealing with correlated observation error in ensemble filters.

- 1. Idealized correlated error.
- 2. Difference observations.
- 3. Explicitly modeling instrument error.
- 4. Comparing the two methods.
- 5. Conclusions and recommendations.

Lorenz 96 Model, 40-instruments

Time difference assimilation best for large correlated error. Terrible for small correlated error.

20 member EAKF. Optimal inflation. Localization halfwidth 0.2

Lorenz 96 Model, 1-instrument

Time difference assimilation best for large correlated error. Not bad for small correlated error.

20 member EAKF. Optimal inflation. Localization halfwidth 0.2

Outline

Dealing with correlated observation error in ensemble filters.

- 1. Idealized correlated error.
- 2. Difference observations.
- 3. Explicitly modeling instrument error.
- 4. Comparing the two methods.
- 5. Conclusions and recommendations.

Conclusions

- Modeling correlated obs error 'optimal' for large ensemble.
- Sampling error is a problem for small ensembles.
- Multiplicative state inflation can reduce this problem.
- Additive inflation for obs error may help?
- Time difference obs effective for large correlated error.

General things to keep in mind:

- Details of filtering problem determine best methods.
- Making models/filters more deterministic generally helps.

Learn more about DART at:

www.image.ucar.edu/DAReS/DART

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., Arellano, A., 2009: *The Data Assimilation Research Testbed: A community facility.* BAMS, **90**, 1283—1296, doi: 10.1175/2009BAMS2618.1

Nanjing DA Workshop, 29 Aug. 2017

