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Want to predict where the ball will land.
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Prediction Model
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Prediction Model

For the ball this is simple:

 

x= xinitial +uinitialt

y= yinitial + vinitialt−1 2gt
2
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Prediction Model

For the ball this is simple:

 

x= xinitial +uinitialt

y= yinitial + vinitialt−1 2gt
2
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However, may be uncertain about initial conditions:
xinitial, yinitial, uinitial and vinitial
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Only know probability distribution about the throw.
Uncertainty in these leads to uncertainty in x, y, u, v.

Position of 
shoulder.

Speed of arm.

Release 
angle.

Arm 
length.



Sample this with an ‘ensemble’ of balls with random 
draws from the thrower.
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Prediction Model Observing System

Need observations (measurements) of the red ball.

All observations have errors.

Observe position of ball every half second after throw.
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Observations of the red ball.
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Observations of the red ball.



Introduction to DA pg 12

Observations of the red ball.
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Observations of the red ball.
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𝜎
2𝜎

Observation error is normal (gaussian).
Probability (likelihood) of sample states shown.

𝑃 = $
%&'(� 𝑒

+,(

(-( (from definition of normal).

Solid circle is 1 standard 
deviation, 𝜎.
Dashed circle is 2 standard 
deviations, 2𝜎.
(x and y errors uncorrelated)



Prediction Model Observing System

Data Assimilation

Forecasts
Observations
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For one obesrvation, likelihood of trajectory is:
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For many observations, product of likelihoods
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For many observations, product of likelihoods
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For many observations, product of likelihoods
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Assimilating the first observation:
Make large ensemble of forecasts.
Use first observation to assign relative probability.
500 most likely of 10000 (darker blue => more likely).
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Assimilating the first observation:
500 balls at time 0.5 are an ensemble analysis.
Show uncertainty of best estimate of red ball’s location.



Introduction to DA pg 22

Assimilating the first observation:
Can make a forecast to later times.
Green is probability weighted ensemble mean.
Best estimate of the ball’s position after 2 seconds.
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Assimilating the second observation:
Can include observations from subsequent times.
Analysis using observations at 0.5 and 1 seconds shown.
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Assimilating the second observation:
Can include observations from subsequent times.
Forecast using observations at 0.5 and 1 seconds shown.
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Assimilating the third observation:
Analysis using observations at 0.5, 1, 1.5 seconds shown.
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Assimilating the third observation:
Forecast using observations at 0.5, 1, 1.5 seconds shown.
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Assimilating the final observation:
Analysis using observations at 0.5, 1, 1.5, 2 seconds.



Data assimilation combines model and observations.

Analyses and forecasts are always uncertain.

Analyses become more accurate, more certain with more 
observations.

Shorter lead forecasts are more accurate, more certain.

Quantifying this uncertainty is important.
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8. Additional	topics.
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Analyses more accurate, more certain with more 
observations.

Shorter lead forecasts are more accurate, more certain.

Can also improve estimate using future observations; 
this is called smoothing.

Information about the thrower can also be obtained; 
this is called initial condition estimation.
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As more observations are used, forecast for time two 
seconds generally improves and has less uncertainty.
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Smoothing

Forecast

Initial condition

After 1st Observation

Analysis



As more observations are used, forecast for time two 
seconds generally improves and has less uncertainty.
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Smoothing

Forecast

Initial condition

After 2nd Observation

Analysis



As more observations are used, forecast for time two 
seconds generally improves and has less uncertainty.
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Smoothing

Forecast

Initial condition

After 3rd Observation

Analysis



As more observations are used, forecast for time two 
seconds generally improves and has less uncertainty.
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Smoothing

Initial condition

After 4th Observation

Analysis



Impact on unobserved (hidden) variables.

Have been looking at position x, y.
Velocity components u and v are also part of model.
Estimates of u and v are improved by observations of x, y.
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Forecast of velocity as lead time decreases.
As more observations are used, forecast for time 2 seconds 
generally improves, gets more certain.

Introduction to DA pg 36

After 1st Observation



Introduction to DA pg 37

After 2nd Observation

Forecast of velocity as lead time decreases.
As more observations are used, forecast for time 2 seconds 
generally improves, gets more certain.
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After 3rd Observation

Forecast of velocity as lead time decreases.
As more observations are used, forecast for time 2 seconds 
generally improves, gets more certain.
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After 4th Observation

Forecast of velocity as lead time decreases.
As more observations are used, forecast for time 2 seconds 
generally improves, gets more certain.



Estimating initial conditions.

Example: estimate of shoulder position.
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Estimating initial conditions: Shoulder position. 
Estimate improves, gets more certain with more observations.
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After 1st Observation
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After 2nd Observation

Estimating initial conditions: Shoulder position. 
Estimate improves, gets more certain with more observations.
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After 3rd Observation

Estimating initial conditions: Shoulder position. 
Estimate improves, gets more certain with more observations.
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After 4th Observation

Estimating initial conditions: Shoulder position. 
Estimate improves, gets more certain with more observations.



Estimating a model parameter:

Suppose we don’t know g exactly.

Put a sample of possible g values into model ensemble.
Each forecast has its own g.

Look at probability of resulting trajectories as function of g.

Display 500 highest probability trajectories out of 10,000.
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Estimating model parameter: gravity.
Estimate improves, gets more certain with more observations.
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After 1st Observation

Brighter 
green is 
closer to -
9.8 m/s2
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After 2nd Observation

Brighter 
green is 
closer to -
9.8 m/s2

Estimating model parameter: gravity.
Estimate improves, gets more certain with more observations.
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After 3rd Observation

Brighter 
green is 
closer to -
9.8 m/s2

Estimating model parameter: gravity.
Estimate improves, gets more certain with more observations.



Introduction to DA pg 49

After 4th Observation

Brighter 
green is 
closer to -
9.8 m/s2

Estimating model parameter: gravity.
Estimate improves, gets more certain with more observations.
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After 1st Observation

Estimating model parameter: gravity.
Estimate improves, gets more certain with more observations.
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After 2nd Observation

Estimating model parameter: gravity.
Estimate improves, gets more certain with more observations.
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After 3rd Observation

Estimating model parameter: gravity.
Estimate improves, gets more certain with more observations.
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After 4th Observation

Estimating model parameter: gravity.
Estimate improves, gets more certain with more observations.
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Learning about the model:

Ø Is the model estimate of uncertainty accurate?
Ø What is bias (mean error) of model forecasts?
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Learning about the observations:

Ø What is observation error variance?
Ø What is bias (mean error) of observations?
Ø How valuable is each observation?
Ø Designing observation system:

• Better to observe u and v?
• Two observations at time 1, none at time 2?
• One good instrument or two bad ones? 
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Learning about the ’external forcing’:

Example: Suppose there is a strong wind blowing.
We don’t have a (dynamical) forecast model for the wind.
Wind has strong influence on trajectory.

Can estimate wind from observations of ball.

Geophysical examples:
• Soil moisture model forced by precipitation.
• Atmosphere model forced by sea surface temperature.
• Upper atmosphere forced by solar inputs.



• Analyses	and	forecasts	of	state	variables.

• Smoothing	estimates	of	state	variables.

• Estimate	model	parameters.

• Estimate	initial	conditions.

• Estimate	model	errors.

• Estimate	observing	system	errors.

• Quantitatively	design	observing	systems.

• Estimate	external	forcing.

• Estimate	anything	correlated	with	model/observations.
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Ball example is in a 2-dimensional space, easy to visualize.

Really a 4-dimensional ‘phase’ space including velocity: u, v.

Atmosphere, ocean, land, coupled models are BIG.

But, still just a ‘ball’ moving in a HUGE phase space.

All data assimilation capabilities will still work.



A	time-varying	state-vector		𝐱𝒕,
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A	time-varying	state-vector		𝐱𝒕,

Times	𝑡; with	observations:			𝑘 = 1, 2, … ;						𝑡;A$ > 𝑡; ≥ 𝑡D,
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A	time-varying	state-vector		𝐱E,

Times	𝑡; with	observations:			𝑘 = 1, 2, … ;						𝑡;A$ > 𝑡; ≥ 𝑡D,

Observations	at	𝑡; related	to	𝐱EF; 𝐲; = ℎ; 𝐱EF + 𝜈;, (1)
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Forward	
Operator

Observations Observation
Error



A	time-varying	state-vector		𝐱𝒕,

Times	𝑡; with	observations:			𝑘 = 1, 2, … ;						𝑡;A$ > 𝑡; ≥ 𝑡D,

Observations	at	𝑡; related	to	𝐱EF; 𝐲; = ℎ; 𝐱EF + 𝜈;, (1)

Observation	error	is	zero	mean,	normal,	𝜈; = 𝑁 0, 𝐑; , (2)
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Observation	
Error
Covariance



A	time-varying	state-vector		𝐱𝒕,

Times	𝑡; with	observations:			𝑘 = 1, 2, … ;						𝑡;A$ > 𝑡; ≥ 𝑡D,

Observations	at	𝑡; related	to	𝐱EF;    𝐲; = ℎ; 𝐱EF + 𝜈;, (1)

Observation	error	is	zero	mean,	normal,	𝜈; = 𝑁 0, 𝐑; , (2)

A	forecast	model	𝑚 for	the	state-vector;	𝐱EFO3 = 𝑚;:;A$ 𝐱EF (3)
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A	time-varying	state-vector		𝐱𝒕,

Times	𝑡; with	observations:			𝑘 = 1, 2, … ;						𝑡;A$ > 𝑡; ≥ 𝑡D,

Observations	at	𝑡; related	to	𝐱EF;    𝐲; = ℎ; 𝐱EF + 𝜈;, (1)

Observation	error	is	zero	mean,	normal,	𝜈; = 𝑁 0, 𝐑; , (2)

A	forecast	model	𝑚 for	the	state-vector;	𝐱EFO3 = 𝑚;:;A$ 𝐱EF (3)

𝑚 can	have	deterministic	and	stochastic	parts;

𝑚;:;A$ 𝐱EF = 𝑓;:;A$ 𝐱EF + 𝑔;:;A$ 𝐱EF . (4)
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Define	the	set	of	all	observations	taken	no	later	than	time	𝑡;:
𝐘EF = 𝐲E; 𝑡 ≤ 𝑡; (5)

Problems	of	interest	are:

Analysis: 𝑃 𝐱E|𝐘EF , 					𝑡 = 𝑡; (6)
Forecast: 𝑃 𝐱E|𝐘EF , 					𝑡 > 𝑡; (7)
Smoother: 𝑃 𝐱E|𝐘EF , 					𝑡 < 𝑡; (8)

Introduction to DA pg 66



Define	the	set	of	all	observations	taken	no	later	than	time	𝑡;:
𝐘EF = 𝐲E; 𝑡 ≤ 𝑡; (5)

Problems	of	interest	are:

Analysis: 𝑃 𝐱E|𝐘EF , 					𝑡 = 𝑡; (6)
Forecast: 𝑃 𝐱E|𝐘EF , 					𝑡 > 𝑡; (7)
Smoother: 𝑃 𝐱E|𝐘EF , 					𝑡 < 𝑡; (8)

Note:	could	also	replace	𝐱E with	any	of	the	other	things	data	
assimilation	can	estimate:	parameters,	initial	conditions,	…
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Forecasts	of	state,	𝐱 are	obtained	from	model.

Need	to	update	forecast	state	given	new	observations:

𝑃 𝐱EF|𝐘EF = P 𝐱EF|𝐲;, 𝐘EF+3

Bayes’	rule:	

𝑃 𝐱EF|𝐘EF =
𝑃 𝐲;|𝐱EF, 𝐘EF+3 𝑃 𝐱EF|𝐘EF+3

𝑃 𝐲;|𝐘EF+3

Observation	errors	uncorrelated	in	time:	
𝑃 𝐲;|𝐱EF, 𝐘EF+3 = 𝑃 𝐲;|𝐱EF

Denominator	in	(9)	is	normalization,	makes	update	a	pdf.
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(9)



Probability	after	new	observation:

Prior	(forecast)
Likelihood

(10)

Posterior	(analysis).
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𝑃 𝐱EF|𝐘EF =
𝑃 𝐲;|𝐱 𝑃 𝐱EF|𝐘EF+3
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛



Probability	after	new	observation:

Prior	(forecast)
Likelihood

(10)

Posterior	(analysis).

Forecasts	produced	by	applying	model	to	analysis.

Smoother	can	be	derived	from	a	similar	Bayesian	analysis.
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𝑃 𝐱EF|𝐘EF =
𝑃 𝐲;|𝐱 𝑃 𝐱EF|𝐘EF+3
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛



Aside:	Derivation	of	generalized	Bayes:
𝑃 𝐴, 𝐵 = 								𝑃 𝐴 𝐵 					𝑃 𝐵 				= 𝑃 𝐵 𝐴 𝑃 𝐴
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(a1)



Aside:	Derivation	of	generalized	Bayes:
𝑃 𝐴, 𝐵 = 								𝑃 𝐴 𝐵 					𝑃 𝐵 				= 𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐴, 𝐵, 𝐶 = 		𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 𝐵, 𝐶 𝑃 𝐵, 𝐶
𝑃 𝐴, 𝐵, 𝐶 = 		𝑃 𝐵, 𝐴, 𝐶 = 𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴, 𝐶
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(a1)
(a2)
(a3)

Extend	(a1)	to	get	(a2)	and	(a3).



Aside:	Derivation	of	generalized	Bayes:
𝑃 𝐴, 𝐵 = 								𝑃 𝐴 𝐵 					𝑃 𝐵 				= 𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐴, 𝐵, 𝐶 = 		𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 𝐵, 𝐶 𝑃 𝐵, 𝐶
𝑃 𝐴, 𝐵, 𝐶 = 		𝑃 𝐵, 𝐴, 𝐶 = 𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴, 𝐶

𝑃 𝐴 𝐵, 𝐶 =
𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴, 𝐶

𝑃 𝐵, 𝐶
𝑃 𝐴, 𝐶
𝑃 𝐵, 𝐶 =

𝑃 𝐴 𝐶 𝑃 𝐶
𝑃 𝐵 𝐶 𝑃 𝐶 =

𝑃 𝐴 𝐶
𝑃 𝐵 𝐶

𝑃 𝐴 𝐵, 𝐶 =
𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴 𝐶

𝑃 𝐵 𝐶
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(a1)
(a2)
(a3)

(a4)

(a5)

Solve	from	(a2),	(a3).

Ratio	from	(a1).

Substitute	(a4)	in	(a5).



Aside:	Derivation	of	generalized	Bayes:

𝑃 𝐴 𝐵, 𝐶 														=
𝑃 𝐵 𝐴, 𝐶 𝑃 𝐴 𝐶

𝑃 𝐵 𝐶

𝑃 𝐱EF|𝐲;, 𝐘EF+3 =
𝑃 𝐲;|𝐱EF, 𝐘EF+3 𝑃 𝐱EF|𝐘EF+3

𝑃 𝐲;|𝐘EF+3
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Ø Data	Assimilation	is	stochastic.

Ø Bayes	can	be	used	to	define	the	problem.

Ø General,	but	still	some	assumptions:

• Observation	error	has	zero	mean.

• Observation	error	is	gaussian.

• Observation	error	uncorrelated	in	time.



1. Data	Assimilation:	Building	a	simple	forecast	system.

2. Data	Assimilation:	What	can	it	do?

3. Data	Assimilaton:	A	general	description.

4. Methods:	Particle	filter.

5. Methods:	Variational.

6. Methods:	Kalman filter.

7. Methods:	Ensemble	Kalman filter.

8. Additional	topics.
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Prediction Model Observing 
System

DART

Analysis

DART provides data assimilation ‘glue’ to build state-of-the-
art ensemble forecast systems for even the largest models.
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Provide State-of-the-Art Data Assimilation capability to:

Ø Prediction research scientists,

Ø Model developers,

Ø Observation system developers,

Who may not have any assimilation expertise.
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Ø Models small to huge.

Ø Few or many observations.

Ø Tiny to huge computational resources.

Ø Entry cost must be low.

Ø Competitive with existing methods for weather prediction:
Scientific quality of results,
Total computational effort.
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Methods: Particle filter.

The	method	we	have	been	using	is	too	expensive.
Had	to	do	10,000	sample	forecasts	for	this	simple	model.

This	method	scales	horribly	when	the	model	size	gets	bigger.	

Not	practical	for	most	geophysical	applications.
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Methods: Particle filter.

The	naïve	method	used	here	so	far	has:
Independent	evolving	estimates,
Associate	probability	with	each	estimate	given	observations.

Particle	filter	adds:
Periodically	eliminate	some	unlikely	estimates,
Duplicate	likely	estimates.
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Methods: Particle filter.

Capabilities:
• Can	represent	arbitrary	probability	distribution.
• Trivial	to	implement.

Challenges:
• Needs	many	model	forecasts	even	for	small	models.
• Scales	poorly	for	large	models.

Prospects:
• Research	on	improving	scaling	underway.
• Hybrid	methods	with	ensemble	filters	promising.
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8. Additional	topics.

Introduction to DA pg 83



Simplify	problem	by	only	trying	to	find	most	likely	trajectory.

This	is	the	trajectory	that	maximizes	the	probability.

Same	as	trajectory	that	minimizes	distance	from	observations.

(If	the	distance	is	normalized	by	observation	error	variances).
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Methods: Variational



Methods: Variational
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Find	single	most	probable	trajectory.	
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Methods: Variational
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Maximize	P:
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ln 𝑃 will	also	have	its	maximum	for	this	trajectory.

−2ln𝑃 will	have	its	minimum	for	this	trajectory.
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3D	Variational	assimilation.
Just	consider	observations	at	a	single	time.	
Find	state	that	minimizes	distance	to	observations	at	this	time.
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For	single	x,	y	observation	
at	time	0.5,	solution	is	just	
the	observation	itself	(not	
very	exciting).

Methods: Variational



3D	Variational	assimilation.
Two	observations	of	x,	y	at	time	0.5.
One	has	error	variance	that	is	twice	as	large	as	the	other.
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Best	analysis	minimizes:

Where	𝜎%is	observation	
error	variance.d1

d2

𝑑$% 𝜎$% + 𝑑%% 𝜎%%⁄⁄

Methods: Variational



3D	Variational	assimilation.

Cost	function	measures	distance	between	a	model	state	and	the	

observations	(normalized	by	the	observation	error).

Generalized	cost	function	consistent	with	earlier	equations.

Minimize	J	to	get	the	analysis	vector	xa
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𝐽 𝐱m = ℎ 𝐱m − 𝐲 n𝐑1$ ℎ 𝐱m − 𝐲 

Methods: Variational



Prediction Model Observing System

Data Assimilation

Analysis

Forecasts
Observations

Initial 
Conditions

Methods: Variational
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Sequential Data Assimilation Framework



Prediction Model Observing System

Data Assimilation

Analysis

Forecasts
Observations

Initial 
Conditions

Methods: Variational
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3D Variational is done sequentially.

A forecast from a 
previous time is 
available at 
assimilation time.



3D	Variational	assimilation.
Two	observations	of	x,	y	at	time	0.5.
Also	have	a	forecast	from	an	earlier	time,	prior	called	𝐱o.
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Best	analysis	minimizes:

Challenge:	What	is	
the	‘background	error	
covariance’	(green	circles)?	
In	other	words,	how	much	
do	we	trust	the	forecast	
compared	to	observations?

d1

d2

db

𝑑$% 𝜎$% + 𝑑%% 𝜎%%⁄ + 𝑑p% 𝜎p%⁄⁄

𝜎p%

Methods: Variational



3-Dimensional	Variational	Method:

Cost	function	measures	distance	between	a	model	state,	the	

observations,	and	a	background	(forecast)	state.

Generalized	cost	function	consistent	with	earlier	equations.

Minimize	J	to	get	the	analysis	vector	xa

Challenge:	What	is	background	error	covariance	matrix,	B?
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𝐽 𝐱m = 𝐱m − 𝐱o
n𝐁1$ 𝐱m − 𝐱o + ℎ 𝐱m − 𝐲 n𝐑1$ ℎ 𝐱m − 𝐲 

Methods: Variational



4D	Variational	assimilation.
Two	observations	of	x,	y	at	time	0.5	and	1.0.
Also	have	a	forecast	from	an	earlier	time	valid	at	time	0.5.
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Methods: Variational



4D	Variational	assimilation.
Two	observations	of	x,	y	at	time	0.5	and	1.0.
Also	have	a	forecast	from	an	earlier	time	valid	at	time	0.5.
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Find	model	state	at	time	
0.5	that	gives	green	
forecast	to	time	1.0	and	
minimizes	cost	function:d1 d2

db 𝑑$% 𝜎$% + 𝑑%% 𝜎%%⁄ + 𝑑p% 𝜎p%⁄⁄

Methods: Variational



4-Dimensional	Variational	Method:

Cost	function	measures	distance	between	a	model	trajectory,	the	

observations,	and	a	background	(forecast)	state.

Generalized	cost	function	consistent	with	earlier	equations.

Minimize	J	to	get	the	analysis	vector	xa
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𝐽 𝐱m = 𝐱m − 𝐱o
n𝐁1$ 𝐱m − 𝐱o +

ℎ$ 𝐱m − 𝐲$ n𝐑$1$ ℎ$ 𝐱m − 𝐲$ +
ℎ% 𝑚$:% 𝐱m − 𝐲%

n𝐑%1$ ℎ% 𝑚$:% 𝐱𝐚 − 𝐲%

Background
1st time	observations
2nd time	observations

Methods: Variational



How	to	minimize	these	cost	functions?
Standard	gradient	descent.

How	to	get	the	gradient	for
large	problems?

Must	be	very	efficient.

There	is	a	fast	way	
using	linear	tangent	operator
of	the	model	and	its	transpose
(or	adjoint).
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y

x

Methods: Variational



Gradient	of	J	for	3D	Variational:	

Gradient	of	𝐽 is:

𝐇 is	the	Jacobian	(called	the	tangent	linear)	of	forward	operator	ℎ.

The	ith row	and	jth column	of	H is:

Where	ℎf is	the	forward	operator	for	the	ith observation	and	𝑥u is	the	
jth component	of	the	state	vector.

The	transpose	𝐇n is	called	the	adjoint of	𝐇.
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𝛻𝐽 𝐱m = 2𝐁1$ 𝐱m − 𝐱o + 2𝐇n𝐑1$ ℎ 𝐱m − 𝐲

𝐇f,u 𝐱 =
𝜕ℎf
𝜕𝑥u

𝐽 𝐱m = 𝐱m − 𝐱o
n𝐁1$ 𝐱m − 𝐱o + ℎ 𝐱m − 𝐲 n𝐑1$ ℎ 𝐱m − 𝐲 

Methods: Variational



Gradient	of	J	for	3D	Variational:

Once	the	adjoint 𝐇n is	computed,	gradient	is	straightfoward.

In	trivial	example	here,	ℎ is	linear:	
𝐇 is	just	matrix	representation	of	ℎ.
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𝛻𝐽 𝐱m = 2𝐁1$ 𝐱m − 𝐱o + 2𝐇n𝐑1$ ℎ 𝐱m − 𝐲

Methods: Variational



Gradient	of	J	for	4D	Variational:

Gradient	of	first	line	is	same	as	3D	Variational.

Last	line	leads	to	extra	gradient	term:

Introduction to DA pg 100

𝐽 𝐱m = 𝐱m − 𝐱o
n𝐁1$ 𝐱m − 𝐱o + ℎ$ 𝐱m − 𝐲$ n𝐑$1$ ℎ$ 𝐱m − 𝐲$ +

ℎ% 𝑚$:% 𝐱m − 𝐲%
n𝐑%1$ ℎ% 𝑚$:% 𝐱𝐚 − 𝐲%

2𝐌$:%
n𝐇%n𝐑%1$ ℎ% 𝑚$:% 𝐱m − 𝐲%

Methods: Variational



Gradient	of	J	for	4D	Variational:

Gradient	of	first	line	is	same	as	3D	Variational.

Last	line	leads	to	extra	gradient	term:

𝐌$:% is	the	linear	tangent	of	the	forecast	model,	𝑚$:% .

𝐌$:%
n is	the	adjoint of	the	forecast	model.
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2𝐌$:%
n𝐇%n𝐑%1$ ℎ% 𝑚$:% 𝐱m − 𝐲%

𝐽 𝐱m = 𝐱m − 𝐱o
n𝐁1$ 𝐱m − 𝐱o + ℎ$ 𝐱m − 𝐲$ n𝐑$1$ ℎ$ 𝐱m − 𝐲$ +

ℎ% 𝑚$:% 𝐱m − 𝐲%
n𝐑%1$ ℎ% 𝑚$:% 𝐱𝐚 − 𝐲%

Methods: Variational
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𝐱 ≡ 𝑥, 𝑦, 𝑢, 𝑣
𝑥EA∆E = 𝑥E + 𝑢E∆𝑡
𝑦EA∆E = 𝑦E + 𝑣E∆𝑡 + 0.5𝑔 ∆𝑡 %

𝑢EA∆E = 𝑢E
𝑣EA∆E = 𝑣E + 𝑔∆𝑡

𝐌 =

1 0 ∆𝑡 0
0 1 0 ∆𝑡
0 0 1 0
0 0 0 1

𝐌n =

1 0 0 0
0 1 0 0
∆𝑡 0 1 0
0 ∆𝑡 0 1

Ball	example:	state	vector	is	𝑥, 𝑦, 𝑢, 𝑣;

Model	equations	for	one	
timestep advance.

𝐱EA∆E = 𝑚 𝐱E

Tangent	linear	 ��j
���

Adjoint

Methods: Variational



Introduction to DA pg 103

Enhancing	performance	and	speed,	3D	and	4D	Variational:

Make	B	matrix	smaller	and	better	conditioned:
Transform	model	variables	to	minimize	off-diagonal	terms.
Transform	to	make	some	variables	unimportant,	truncate.

Incremental	variational:
Minimize	𝐽 𝛿𝐱 where 𝛿𝐱 = 𝐱m − 𝐱o
Makes	problem	quadratic	(like	our	ball	example).
Size	of 𝛿𝐱may	be	smaller	than	𝐱 after	transforms.

Methods: Variational
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Enhancing	performance	and	speed,	4D	Variational:

Tangent	linear	is	for	a	given	nonlinear	trajectory.
Increments	from	optimization	may	violate	linear	assumption.
Outer/inner	loop:	

After	some	number	of	gradient	descent	steps	(inner	loop),	
rerun	nonlinear	trajectory	(outer	loop).

Use	reduced	resolution/accuracy	forecast	model.

Lots	of	other	cool	numerical	tricks	and	empirical	accelerations.

Methods: Variational



Capabilities:
• Estimate	maximum	likelihood	solution	only.
• With	enhancements	works	well	for	huge	models.
• Has	been	state-of-the-art	for	weather	prediction.

Challenges:
• Coding	of	tangent	linear/adjoint can	be	time	consuming.
• Good	convergence	of	optimization	may	be	challenging.
• Good	B	matrices	may	be	hard	to	find.

Prospects:
• Weak	constraint	4Dvar	allows	for	model	error.
• Hybrid	methods	with	ensemble	filters	promising.
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Methods: Variational



1. Data	Assimilation:	Building	a	simple	forecast	system.

2. Data	Assimilation:	What	can	it	do?

3. Data	Assimilaton:	A	general	description.

4. Methods:	Particle	filter.

5. Methods:	Variational.

6. Methods:	Kalman filter.

7. Methods:	Ensemble	Kalman filter.

8. Additional	topics.
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Assumes:
linear	model	 Gaussian	noise

Gaussian	state	

linear	forward	operator

Gaussian	observation	error

Methods: Kalman Filter
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𝑚;:;A$ 𝐱EF = 𝑓;:;A$ 𝐱EF + 𝑔;:;A$ 𝐱EF .

𝐲; = ℎ; 𝐱EF + 𝜈;



Product	of	d-dimensional	normals (gaussians)	with	means	𝜇$ and	𝜇%
and	covariance	matrics Σ$ and	Σ$ is	normal.

Methods: Kalman Filter
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𝑁 𝜇$, Σ$ 𝑁 𝜇%, Σ% = 𝑐𝑁 𝜇, Σ



Product	of	d-dimensional	normals (gaussians)	with	means	𝜇$ and	𝜇%
and	covariance	matrics Σ$ and	Σ$ is	normal.

Covariance: Σ = Σ$1$ + Σ%1$ 1$

Mean: 𝜇 = Σ Σ$1$𝜇$ + Σ%1$𝜇%

Methods: Kalman Filter
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𝑁 𝜇$, Σ$ 𝑁 𝜇%, Σ% = 𝑐𝑁 𝜇, Σ



Product	of	d-dimensional	normals (gaussians)	with	means	𝜇$ and	𝜇%
and	covariance	matrics Σ$ and	Σ$ is	normal.

(11)

Covariance: Σ = Σ$1$ + Σ%1$ 1$ (12)

Mean: 𝜇 = Σ Σ$1$𝜇$ + Σ%1$𝜇% (13)

Weight: 𝑐 = $
%& , (⁄ �3A�( 3 (⁄ exp − $

%
𝜇% − 𝜇$ n Σ$ + Σ% 1$ 𝜇% − 𝜇$

Methods: Kalman Filter
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𝑁 𝜇$, Σ$ 𝑁 𝜇%, Σ% = 𝑐𝑁 𝜇, Σ

We’ll	ignore	the	weight	since	we	immediately	normalize	products	to	be	PDFs.



Methods: Kalman Filter

Recall	our	earlier	assimilation	update	equation.

(10)

Numerator	is	just	product	of	two	gaussians.

Denominator	just	normalizes	posterior	to	be	a	PDF.
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𝑃 𝐱EF|𝐘EF =
𝑃 𝐲;|𝐱 𝑃 𝐱EF|𝐘EF+3
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛



Methods: Kalman Filter
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𝑃 𝐱EF|𝐘EF =
𝑃 𝐲;|𝐱 𝑃 𝐱EF|𝐘EF+3
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

(10)

Prior	is	gaussian,	comes	from	forecast	model.



Methods: Kalman Filter
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𝑃 𝐱EF|𝐘EF =
𝑃 𝐲;|𝐱 𝑃 𝐱EF|𝐘EF+3
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

(10)

Likelihood	gaussian: mean	is	measured,	covariance	from	designer.



Methods: Kalman Filter
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𝑃 𝐱EF|𝐘EF =
𝑃 𝐲;|𝐱 𝑃 𝐱EF|𝐘EF+3
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

(10)

Posterior	is	gaussian,	from	(11).



Kalman filter	cost	challenges:

Product	of	d-dimensional	normals (gaussians)	with	means	𝜇$ and	𝜇%
and	covariance	matrics Σ$ and	Σ$ is	normal.

(11)

Covariance: Σ = Σ$1$ + Σ%1$ 1$ (12)

Mean: 𝜇 = Σ Σ$1$𝜇$ + Σ%1$𝜇% (13)

Must	store	and	invert	covariance	matrices.
Too	big	to	store	for	large	problems.
Too	costly	to	invert,	>	O(n2).

Methods: Kalman Filter
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𝑁 𝜇$, Σ$ 𝑁 𝜇%, Σ% = 𝑐𝑁 𝜇, Σ



Methods: Kalman Filter

Capabilities:
• Estimates	normal	approximation	to	probability	density.
• Easy	to	apply	with	linear	models.
• Huge	literature	with	many	extensions.

Challenges:
• Scales	poorly	for	large	models.
• Requires	extensions	for	use	with	nonlinear	models	or	h.

Prospects:
• Ensemble	approximations	avoid	challenges.
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1. Data	Assimilation:	Building	a	simple	forecast	system.

2. Data	Assimilation:	What	can	it	do?

3. Data	Assimilaton:	A	general	description.

4. Methods:	Particle	filter.

5. Methods:	Variational.

6. Methods:	Kalman filter.

7. Methods:	Ensemble	Kalman filter.

8. Additional	topics.
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Methods: Ensemble Kalman Filter
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1. Prior ensemble:



Methods: Ensemble Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 



Methods: Ensemble Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 



Methods: Ensemble Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product of observation likelihood (red) with 
prior (green)



Methods: Ensemble Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product of observation likelihood (red) with 
prior (green) to get gaussian posterior (blue). 



Methods: Ensemble Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product of observations (red) with prior 
(green) to get gaussian posterior (blue). 

3. Shift ensemble 
members to have 
posterior mean.



Methods: Ensemble Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product of observations (red) with prior 
(green) to get gaussian posterior (blue). 

3. Shift ensemble 
members to have 
posterior mean.

4. Compact ensemble 
to have posterior 
covariance.



Methods: Ensemble Kalman Filter
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1. Prior ensemble: fit a gaussian, sample mean and 
covariance (pdf is green contours). 

2. Kalman filter product of observations (red) with prior 
(green) to get gaussian posterior (blue). 

3. Shift ensemble 
members to have 
posterior mean.

4. Compact ensemble 
to have posterior 
covariance.



Methods: Ensemble Kalman Filter
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20-member ensemble example.
Starts with random draw from uncertain thrower.
Quickly converges towards truth.
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20-member ensemble example.
Starts with random draw from uncertain thrower.
Quickly converges towards truth.
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20-member ensemble example.
Starts with random draw from uncertain thrower.
Quickly converges towards truth.
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20-member ensemble example.
Starts with random draw from uncertain thrower.
Quickly converges towards truth.
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20-member ensemble example.
Starts with random draw from uncertain thrower.
Quickly converges towards truth.



Methods: Ensemble Kalman Filter
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20-member ensemble example.
Starts with random draw from uncertain thrower.
Quickly converges towards truth.



Methods: Ensemble Kalman Filter
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20-member ensemble example.
Starts with random draw from uncertain thrower.
Quickly converges towards truth.



Methods: Ensemble Kalman Filter
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20-member ensemble example.
Starts with random draw from uncertain thrower.
Quickly converges towards truth.



Methods: Ensemble Kalman Filter
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Can	be	implemented	with	no	matrix	inversions.
Very	fast	compared	to	Kalman filter.

Fails	for	large	models	with	small	ensembles.
Can	be	fixed	by	’localizing’	impact	of	observations.

Small	ensembles	have	too	little	variance.
Can	be	fixed	by	‘inflating’	ensembles.



Methods: Ensemble Kalman Filter

Capabilities:
• Estimates	some	aspects	of	arbitrary	probability	distribution.
• Easy	to	apply	to	any	model,	observation	operators.
• Works	with	huge	models	(see	caveats	below).

Challenges:
• Sampling	error	leads	to	covariance	errors.
• Needs	localization/inflation	to	work	with	

small	ensembles/large	models.

Prospects:
• Hybrids	with	variational may	have	advantages.
• Hybrids	with	particle	filters	may	be	better	for	non-gaussian.
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1. Data	Assimilation:	Building	a	simple	forecast	system.

2. Data	Assimilation:	What	can	it	do?

3. Data	Assimilaton:	A	general	description.

4. Methods:	Particle	filter.

5. Methods:	Variational.

6. Methods:	Kalman filter.

7. Methods:	Ensemble	Kalman filter.

8. Additional	topics.
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