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Prediction Model Observing 
System

DART

Analysis

DART provides data assimilation ‘glue’ to build state-of-the-
art ensemble forecast systems for even the largest models.

Nanjing DA Tutorial, 29 Aug. 2017 pg 3



Provide State-of-the-Art Data Assimilation capability to:

Ø Prediction research scientists,

Ø Model developers,

Ø Observation system developers,

Who may not have any assimilation expertise.
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Ø Models small to huge.

Ø Few or many observations.

Ø Tiny to huge computational resources.

Ø Entry cost must be low.

Ø Competitive with existing methods for weather prediction:
Scientific quality of results,
Total computational effort.

Nanjing DA Tutorial, 29 Aug. 2017 pg 5



Product	of	d-dimensional	normals (gaussians)	with	means	𝜇" and	𝜇#
and	covariance	matrics Σ" and	Σ" is	normal.

(11)

Covariance: Σ = Σ"&" + Σ#&" &" (12)

Mean: 𝜇 = Σ Σ"&"𝜇" + Σ#&"𝜇# (13)

Weight: 𝑐 = "
#) * +⁄ -./-+ . +⁄ exp − "

#
𝜇# − 𝜇" 4 Σ" + Σ# &" 𝜇# − 𝜇"
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𝑁 𝜇", Σ" 𝑁 𝜇#, Σ# = 𝑐𝑁 𝜇, Σ

We’ll	ignore	the	weight	since	we	immediately	normalize	products	to	be	PDFs.



Recall	our	earlier	assimilation	update	equation.

(10)

Numerator	is	just	product	of	two	gaussians.

Denominator	just	normalizes	posterior	to	be	a	PDF.
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𝑃 𝐱9:|𝐘9: =
𝑃 𝐲>|𝐱 𝑃 𝐱9:|𝐘9:?.
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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𝑃 𝐱9:|𝐘9: =
𝑃 𝐲>|𝐱 𝑃 𝐱9:|𝐘9:?.
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

(10)

Prior	is	gaussian,	comes	from	forecast	model.
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𝑃 𝐱9:|𝐘9: =
𝑃 𝐲>|𝐱 𝑃 𝐱9:|𝐘9:?.
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

(10)

Likelihood	is	gaussian,	mean	measured,	covariance	from	designer.
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𝑃 𝐱9:|𝐘9: =
𝑃 𝐲>|𝐱 𝑃 𝐱9:|𝐘9:?.
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

(10)

Posterior	is	gaussian,	from	(11).
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1. A	one-dimensional	ensemble	Kalman filter.
2. One	observed,	one	unobserved	variable.
3. Ensemble	Kalman Filter:	A	full	implementation.
4. Making	it	work:

• Localization
• Inflation

5. Parameter	estimation.
6. Some	sample	applications.



Represent a prior pdf by a sample (ensemble) of N values:

A One-Dimensional Ensemble Kalman Filter

Nanjing DA Tutorial, 29 Aug. 2017 pg 12

Example: Predict temperature on the Nanjing campus.



Use	sample	mean

and	sample	standard	deviation	

to	determine	a	corresponding	continuous	distribution

Represent a prior pdf by a sample (ensemble) of N values:

� 

T = Tn N
n=1

N

∑

� 

σT = Tn −T ( )2 N −1( )
n=1

N

∑

� 

Normal T ,σT( )

A One-Dimensional Ensemble Kalman Filter
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If posterior ensemble at time t1 is T1,n,  n = 1, …, N

A One-Dimensional Ensemble Kalman Filter: Model Advance
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If posterior ensemble at time t1 is T1,n,  n = 1, …, N ,
advance each member to time t2 with model, T2,n = L(T1, n)  n = 1, …,N .

A One-Dimensional Ensemble Kalman Filter: Model Advance
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Same as advancing continuous pdf at time t1 …

A One-Dimensional Ensemble Kalman Filter: Model Advance
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Same as advancing continuous pdf at time t1
to time t2 with model L.

A One-Dimensional Ensemble Kalman Filter: Model Advance

Nanjing DA Tutorial, 29 Aug. 2017 pg 17



One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Fit a Gaussian to the sample.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Get the observation likelihood.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Compute the continuous posterior PDF.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Use a deterministic algorithm to ‘adjust’ the ensemble.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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First, ‘shift’ the ensemble to have the exact mean of the posterior.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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First, ‘shift’ the ensemble to have the exact mean of the posterior.
Second, linearly contract to have the exact variance of the posterior.

Sample statistics are identical to Kalman filter.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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1. A	one-dimensional	ensemble	Kalman filter.
2. One	observed,	one	unobserved	variable.
3. Ensemble	Kalman Filter:	A	full	implementation.
4. Making	it	work:

• Localization
• Inflation

5. Parameter	estimation.
6. Some	sample	applications.



One observed, one unobserved variable.

So	far,	we	have	a	known																																																								observation	
likelihood	for	a	single	variable.

Now,	suppose	the		model	state	has	an	additional	variable,

temperature	at	Shanghai.

How	should	ensemble	members	update	the	additional	variable?
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One observed, one unobserved variable.
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One observed, one unobserved variable.
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Assume	that	all	we	
know	is	the	prior	
joint	distribution.

One	variable	is	
observed.

Update	observed	
variable	with	
ensemble	Kalman
filter.
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One observed, one unobserved variable.

Assume	that	all	we	
know	is	the	prior	
joint	distribution.
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One observed, one unobserved variable.

Assume	that	all	we	
know	is	the	prior	
joint	distribution.

One	variable	is	
observed.

Update	observed	
variable	with	
ensemble	Kalman
filter.
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One observed, one unobserved variable.

Assume	that	all	we	
know	is	the	prior	
joint	distribution.

One	variable	is	
observed.

Compute	
increments	for	prior	
ensemble	members	
of	observed	
variable.
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One observed, one unobserved variable.

Assume	that	all	we	
know	is	the	prior	
joint	distribution.

One	variable	is	
observed.

Compute	
increments	for	prior	
ensemble	members	
of	observed	
variable.

3
3.5

4
4.5

5

Un
ob

s.

−2 0 2 4
Observed Variable

Increments

Nanjing DA Tutorial, 29 Aug. 2017 pg 32



One observed, one unobserved variable.

Assume	that	all	we	
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One observed, one unobserved variable.
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One observed, one unobserved variable.

Assume	that	all	we	
know	is	the	prior	
joint	distribution.

One	variable	is	
observed.

Compute	
increments	for	prior	
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One observed, one unobserved variable.

Using	only	increments	
guarantees	that	if	
observation	had	no	
impact	on	observed	
variable,	the	
unobserved	variable	is	
unchanged.

Highly	desirable!
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One observed, one unobserved variable.

Assume	that	all	we	
know	is	the	prior	joint	
distribution.

How	should	the	
unobserved	variable	be	
impacted?

1st choice:	least	squares

Equivalent	to	linear	
regression.

Same	as	assuming	
binormal prior.
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
variables.

How	should	the	
unobserved	variable	be	
impacted?

1st choice:	least	squares

Begin	by	finding	least	
squares	fit.
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
variables.

Next,	regress	the	
observed	variable	
increments	onto	
increments	for	the	
unobserved	variable.	

Equivalent	to	first	finding	
image	of	increment	in	
joint	space.	
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One observed, one unobserved variable.

Have	joint	prior	
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
variables.
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
variables.
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
variables.

Next,	regress	the	
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
variables.

Regression:	Equivalent	to	
first	finding	image	of	
increment	in	joint	space.

Then	projecting	from	
joint	space	onto	
unobserved	priors.3
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
variables.
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
variables.
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One observed, one unobserved variable.

Have	joint	prior	
distribution	of	two	
variables.
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One observed, one unobserved variable.

Now	have	an	updated	
(posterior)	ensemble	for	
the	unobserved	variable.	

Fitting	Gaussians	shows	
that	mean	and	variance	
have	changed.	

Other	features	of	the	
prior	distribution	may	
also	have	changed.3
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information	as	previous	slides.
Compressed	these	two.	Compressed	these	two.	
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One observed, one unobserved variable.
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One observed, one unobserved variable.

Now	have	an	updated	
(posterior)	ensemble	for	
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1. A	one-dimensional	ensemble	Kalman filter.
2. One	observed,	one	unobserved	variable.
3. Ensemble	Kalman Filter:	A	full	implementation.
4. Making	it	work:

• Localization
• Inflation

5. Parameter	estimation.
6. Some	sample	applications.



Ensemble Kalman Filter: A full implementation.

Ensemble	state	
estimate	after	using	
previous	observation	
(analysis)

Ensemble	state	
at	time	of	next	
observation	
(prior)

1. Use	model	to	advance	ensemble (3	members	here)	to	time	at	
which	next	observation	becomes	available.
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Ensemble Kalman Filter: A full implementation.

2. Get	prior	ensemble	sample	of	observation,	y = h(x),	by	
applying	forward	operator	h to	each	ensemble	member.

Theory:	observations	
from	instruments	with	
uncorrelated	errors	can	
be	done	sequentially.
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Ensemble Kalman Filter: A full implementation.

3. Get	observed	value and	observational	error	distribution
from	observing	system.
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Ensemble Kalman Filter: A full implementation.

4. Find	the	increments for	the	prior	observation	ensemble																		
(this	is	a	scalar	problem	for	uncorrelated	observation	errors).
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Ensemble Kalman Filter: A full implementation.

4. Find	the	increments for	the	prior	observation	ensemble																		
(this	is	a	scalar	problem	for	uncorrelated	observation	errors).

Note:	Difference	between	
various	ensemble	filter	methods	
is	primarily	in	observation	
increment	calculation.
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Ensemble Kalman Filter: A full implementation.

5. Use	ensemble	samples	of	y and	each	state	variable	to	linearly	
regress	observation	increments	onto	state	variable	increments.
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Ensemble Kalman Filter: A full implementation.

5. Use	ensemble	samples	of	y and	each	state	variable	to	linearly	
regress	observation	increments	onto	state	variable	increments.

Theory:	impact	of	observation	
increments	on	each	state	
variable	can	be	handled	
independently!
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Ensemble Kalman Filter: A full implementation.

5. Use	ensemble	samples	of	y and	each	state	variable	to	linearly	
regress	observation	increments	onto	state	variable	increments.

DART	updates	all	state	
variables	in	parallel.	Variables	
randomly	assigned	to	
processes	for	load	balancing.
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Ensemble Kalman Filter: A full implementation.

6. When	all	ensemble	members	for	each	state	variable	are	
updated,	integrate	to	time	of	next	observation	…
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Ensemble Kalman Filter: A full implementation.

For linear, gaussian problem:
If, ensemble size N>Ncrit

Mean and covariance are identical to Kalman Filter,
Else

Diverges.

Ncrit: Number of positive singular values in SVD of 
covariance matrix.
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Ensemble Kalman Filter: A full implementation.
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Ø (Ensemble) KF optimal for linear model, gaussian likelihood, 
perfect model.

Ø In KF, only mean and covariance have meaning.

Ø Ensemble allows computation of many other statistics.
Ø What do they mean? Not entirely clear.

Ø What do they mean when there are all sorts of error? 
Even less clear. 

Ø Must Calibrate and Validate results.
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1. A	one-dimensional	ensemble	Kalman filter.
2. One	observed,	one	unobserved	variable.
3. Ensemble	Kalman Filter:	A	full	implementation.
4. Making	it	work:

• Localization
• Inflation

5. Parameter	estimation.
6. Some	sample	applications.



Making it work:

Lorenz-96 low-order model example.
40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like weather around a latitude band.
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Making it work:

Lorenz-96 is sensitive to small perturbations.
Introduce 20 ‘ensemble’ state estimates.
Each is perturbed for each of the 40-variables at time 0.
Refer to unperturbed control integration as ‘truth’.
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Making it work:

Assimilate ‘observations’ from 40 random locations.
Interpolate truth to station location.
Simulate observational error: 

Add random draw from N(0, 16) to each.
Start from ‘climatological’ 20-member ensemble.
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Making it work:

1.	Model	error

2.	Obs.	operator	error;
Representativeness

3.	Observation	error
4.	Sampling	Error;
Gaussian	Assumption

5.	Sampling	Error;
Assuming	Linear
Statistical	Relation
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Some error sources in ensemble filters.
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2. One	observed,	one	unobserved	variable.
3. Ensemble	Kalman Filter:	A	full	implementation.
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• Localization
• Inflation

5. Parameter	estimation.
6. Some	sample	applications.



Making it work: Localization
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Plot	shows	expected	absolute	value	of	
sample	correlation	vs.	true	correlation.

Unrelated	obs.	reduce	spread,	increase	
error.	

Attack	with	localization.

Reduce	impact	of	observation	on	weakly	
correlated	state	variables.

Let	weight	go	to	zero	for	many	‘unrelated’	
variables	to	save	on	computing.
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Sampling	Error:	Observations	Impact	Unrelated	State	Variables



Making it work: Localization
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Making it work: Localization

5 10 15 20 25 30 35 40
−10

0

10

time 219 truth ensemble obs

Localization from Hierarchical Filter

time 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obstime 219 truth ensemble obs

5 10 15 20 25 30 35 40
0

0.5

1

State Variable

3 Sample Observation Localizations

Nanjing DA Tutorial, 29 Aug. 2017 pg 72



Nanjing DA Tutorial, 29 Aug. 2017 pg 73

1. A	one-dimensional	ensemble	Kalman filter.
2. One	observed,	one	unobserved	variable.
3. Ensemble	Kalman Filter:	A	full	implementation.
4. Making	it	work:

• Localization
• Inflation

5. Parameter	estimation.
6. Some	sample	applications.



Making it work: Inflation

1.	Model	error

2.	Obs.	operator	error;
Representativeness

3.	Observation	error
4.	Sampling	Error;
Gaussian	Assumption

5.	Sampling	Error;
Assuming	Linear
Statistical	Relation
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Some error sources in ensemble filters.



Making it work: Inflation
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Assimilating with simulated model error.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.

Time evolution for first state variable shown.
Assimilating model quickly diverges from ‘true’ model.



Making it work: Inflation
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Assimilating with simulated model error.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.



Making it work: Inflation
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Reduce confidence in prior to deal with model error.
Use inflation.
Simply increase prior ensemble variance for each state variable.
Adaptive algorithms use observations to guide this.
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Prior PDF Obs.Inflate SD by 1.5
Variance by 1.52
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Making it work: Inflation
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Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.
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1. A	one-dimensional	ensemble	Kalman filter.
2. One	observed,	one	unobserved	variable.
3. Ensemble	Kalman Filter:	A	full	implementation.
4. Making	it	work:

• Localization
• Inflation

5. Parameter	estimation.
6. Some	sample	applications.



A	time-varying	state-vector		𝐱𝒕,

Times	𝑡> with	observations:			𝑘 = 1, 2, … ;						𝑡>/" > 𝑡> ≥ 𝑡R,

Observations	at	𝑡> related	to	𝐱9:;    𝐲> = ℎ> 𝐱9: + 𝜈>, (1)

Observation	error	is	zero	mean,	normal,	𝜈> = 𝑁 0, 𝐑> , (2)

A	forecast	model	𝑚 for	the	state-vector;	𝐱9:W. = 𝑚>:>/" 𝐱9: (3)

Parameter Estimation
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A	time-varying	state-vector		𝐱𝒕,

Times	𝑡> with	observations:			𝑘 = 1, 2, … ;						𝑡>/" > 𝑡> ≥ 𝑡R,

Observations	at	𝑡> related	to	𝐱9:;    𝐲> = ℎ> 𝐱9: + 𝜈>, (1)

Observation	error	is	zero	mean,	normal,	𝜈> = 𝑁 0, 𝐑> , (2)

A	forecast	model	𝑚 for	the	state-vector;	𝐱9:W. = 𝑚>:>/" 𝐱9:; 𝛂 (3a)

With	model	parameter	vector	𝛂.

Parameter Estimation
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A	time-varying	state-vector		𝐱𝒕,

Times	𝑡> with	observations:			𝑘 = 1, 2, … ;						𝑡>/" > 𝑡> ≥ 𝑡R,

Observations	at	𝑡> related	to	𝐱9:;    𝐲> = ℎ> 𝐱9: + 𝜈>, (1)

Observation	error	is	zero	mean,	normal,	𝜈> = 𝑁 0, 𝐑> , (2)

A	forecast	model	𝑚 for	the	state-vector;	𝐱9:W. = 𝑚>:>/" 𝐱9:; 𝛂 (3a)

With	model	parameter	vector	𝛂.

Parameters	could	be	tuning	for	parameterizations,	external	forcing,…

Example:	Sources	for	chemical	tracers	in	atmosphere.

Parameter Estimation
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A	forecast	model	𝑚 for	the	state-vector;	𝐱9:W. = 𝑚>:>/" 𝐱9:; 𝛂 (3a)

One	solution:	State	augmentation.

Define	augmented	state	vector	𝐱/ = 𝐱, 𝛂

Prediction	model	becomes	(just	a	change	in	notation):

𝐱9:W.
/ = 𝑚>:>/" 𝐱9:

/

Parameter Estimation

Nanjing DA Tutorial, 29 Aug. 2017 pg 83



Parameter Estimation
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State	augmentation	challenges:

In	general,	no	time	prediction	model	for	parameters.
• If	we	had	a	prediction	model,	they	would	just	have	been	state.
• Kalman filter	prior	covariance	comes	from	prediction	model.



Parameter Estimation
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State	augmentation	challenges:

In	general,	no	time	prediction	model	for	parameters.
• If	we	had	a	prediction	model,	they	would	just	have	been	state.
• Kalman filter	prior	covariance	comes	from	prediction	model.

Prior	ensembles	for	parameters	must	be	specified.
• Prior	sample	covariance	controls	impact	of	observations	on	

parameters.
• If	prior	covariance	is	not	well-known,	estimating	parameters	can	

be	challenging.
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1. A	one-dimensional	ensemble	Kalman filter.
2. One	observed,	one	unobserved	variable.
3. Ensemble	Kalman Filter:	A	full	implementation.
4. Making	it	work:

• Localization
• Inflation

5. Parameter	estimation.
6. Some	sample	applications.



DART provides data assimilation ‘glue’ to build ensemble 
forecast systems for  the atmosphere, ocean, land, …

Prediction Model Observing System

DART

Analysis Diagnostics
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Assimilation uses 80 
members of 2o  FV CAM 
forced by a single ocean 

(Hadley+ NCEP-OI2)  
and produces a very   

competitive reanalysis.

O(1 million) 
atmospheric obs are 
assimilated every 
day.

500 hPa GPH
Feb 17 2003

1998-2010
4x daily

is available.

Science: A global atmospheric ensemble reanalysis.
Collaborators: Model Developers at NCAR
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Science: Do new satellite observations of cloud 
motion improve hurricane forecasts?

Atmospheric motion vectors from CIMMS at 
University of Wisconsin.

Collaborator: Ting-Chi Wu, 
Graduate Student, 
University of Miami.
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Tropical Cyclones and Atmospheric Motion Vectors
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Science: Where should more observations be taken to 
improve landfall forecasts?

Ensemble sensitivity analysis for Katrina.

Collaborator: Ryan Torn, University at Albany.
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Hurricane Katrina Sensitivity Analysis

Contours are ensemble mean 48h 
forecast of deep-layer mean wind.

Color shows where 
observations could help.
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Prediction Model Observing System

Data Assimilation

Analysis Diagnostics

Identify
Systematic

Errors
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Science: Diagnosing and correcting errors in the CAM 
FV core.

Collaborator: Peter Lauritzen, CGD.
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Gridpoint noise detected in CAM/DART analysis

CAM FV core - 80 member mean - 00Z 25 September 2006
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Suspicions turned to the polar filter (DPF)

CAM FV core - 80 member mean - 00Z 25 September 2006
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Continuous polar filter (alt-pft) eliminated noise. 
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Differences mostly in transition region of default filter.
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• The use of DART diagnosed a problem that 
had been unrecognized (or at least 
undocumented).

• Could have an important effect on any physics 
in which meridional mixing is important.

• The problem can be seen in ‘free runs’ - it is 
not a data assimilation artifact.

• Without assimilation, can’t get reproducing 
occurrences to diagnose.
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• Climate change over time scales of 1 to several decades has 
been identified as very important for mitigation and infrastructure 
planning.

• Need ocean initial conditions for the IPCC decadal prediction 
program (and maybe a crystal ball, too!).

Science: Global Ocean data assimilation.
Collaborators: Alicia Karspeck, Steve Yeager, CGD.
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FLOAT_SALINITY 68200
FLOAT_TEMPERATURE 395032
DRIFTER_TEMPERATURE 33963
MOORING_SALINITY 27476
MOORING_TEMPERATURE 623967
BOTTLE_SALINITY 79855
BOTTLE_TEMPERATURE 81488
CTD_SALINITY 328812
CTD_TEMPERATURE 368715
STD_SALINITY 674
STD_TEMPERATURE 677
XCTD_SALINITY 3328
XCTD_TEMPERATURE 5790
MBT_TEMPERATURE 58206
XBT_TEMPERATURE 1093330
APB_TEMPERATURE 580111

These counts are for 1998 & 1999 and are representative.

World Ocean Database T, S observation counts.
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Science: Land surface analysis with DART/CLM.
Collaborator: Yongfei Zhang, UT Austin.
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Land surface analysis with DART/CLM:
Estimate snow water equivalent with observations
of snow cover fraction from satellites (MODIS).
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• 80 member ensemble for onset of NH winter
• Assimilate once per day
• Level 3 MODIS product – regridded to a daily 1 degree grid
• Observation error variance is 0.1 (for lack of a better value)
• Observations can impact state variables within 200km
• CLM variable to be updated is the snow water equivalent “H2OSNO”

Standard 
deviation of the 

snow cover 
fraction initial 
conditions for 

Oct. 2002

Nanjing	DA	Tutorial,	29	Aug.	2017
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An early result: assimilation of MODIS snowcover
fraction on total snow water equivalent in CLM.

Prior for Nov 30, 2002

Increments (Prior – Posterior)

Focus on the non-zero increments The model state is changing in 
reasonable places, by 
reasonable amounts. At this 
point, that’s all we’re looking for.

kg/m
2

kg/m
2

Thanks Yongfei!
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Science: Regional Atmospheric Chemistry.
Collaborator: Arthur Mizzi, NCAR/ACD.
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ØWRF-Chem – Weather Research and Forecasting 
Model (WRF) with online chemistry.

ØMeteorological Observations – NOAA PREPBUFR 
conventional observations.

ØChemistry Observations – MOPITT CO retrieval 
profiles (also IASI CO retrievals – results not shown).
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ØWRF/Chem-DART cycling with conventional meteorological 
observations and MOPITT CO V5 retrieval profiles.

ØContinuous six-hr cycling (00Z, 06Z, 12Z, and 18Z).
ØCONUS grid with 101x41x34 grid points and 100 km resolution.
Ø20-member ensemble.
Ø June 1 - 30, 2008 (112 cycles) study period.
ØFull state variable/obs interaction.
Ø Initial and lateral chemical boundary conditions from MOZART-

4 simulation.
ØEmissions: Biogenic – MEGAN, Anthropogenic – global 

inventories, and Fire – Fire Inventory from NCAR (FINN).
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ØTwo experiments: 
² Exp 1: PREPBUFR conventional obs (CNTL DA).

² Exp 2: MOPITT CO retrieval profiles and PREPBUFR conventional obs
(CHEM DA).
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Science: Global Atmospheric Chemistry.
Collaborators: Jerome Barre,

Benjamin Gaubert, NCAR/ACD.
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Uses global CAM/Chem model, 1 degree.

Have full meteorological assimilation capability already.



MOPITT	CO:	
On	TERRA	satellite
tropospheric	profiles

Global	coverage	in	4	days
Multispectral	retrievals

high	sensitivity	on	surface	land/day

IASI	CO:	
On	MetOpA satellite
tropospheric	profiles

Global	coverage	in	1	day
Only	thermal	infrared

Sensitivity	on	upper	PBL	&	
mid	troposphere

CAM/Chem Chemical	DA	System
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Control	run: Met	Only	assimilated MOPITT	run: Met	+	MOPITT	assimilated

IASI	run: Met	+	IASI	assimilated Combined	run: Met	+	MOP+	IASI	assimilated

CAM/Chem Chemical	DA	System
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Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., 
Torn, R., Arellano, A., 2009: The Data Assimilation 
Research Testbed: A community facility.
BAMS, 90, 1283—1296, doi: 10.1175/2009BAMS2618.1 
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www.image.ucar.edu/DAReS/DART
dart@ucar.edu


