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…to produce an analysis
(best possible estimate).

+

Observations combined with a Model forecast…
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Prediction Model Observing 
System

DART

Analysis

DART provides data assimilation ‘glue’ to build state-of-the-
art ensemble forecast systems for even the largest models.
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Provide State-of-the-Art Data Assimilation capability to:

Ø Prediction research scientists,

Ø Model developers,

Ø Observation system developers,

Who may not have any assimilation expertise.
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Ø Models small to huge.

Ø Few or many observations.

Ø Tiny to huge computational resources.

Ø Entry cost must be low.

Ø Competitive with existing methods for weather prediction:
Scientific quality of results,
Total computational effort must be competitive.
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How an Ensemble Filter Works for Geophysical Data Assimilation

Ensemble	state	
estimate	after	using	
previous	observation	
(analysis)

Ensemble	state	
at	time	of	next	
observation	
(prior)

1. Use	model	to	advance	ensemble (3	members	here)	to	time	at	
which	next	observation	becomes	available.
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How an Ensemble Filter Works for Geophysical Data Assimilation

2. Get	prior	ensemble	sample	of	observation,	y = h(x),	by	
applying	forward	operator	h to	each	ensemble	member.

Theory:	observations	
from	instruments	with	
uncorrelated	errors	can	
be	done	sequentially.
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How an Ensemble Filter Works for Geophysical Data Assimilation

3. Get	observed	value and	observational	error	distribution
from	observing	system.
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How an Ensemble Filter Works for Geophysical Data Assimilation

4. Find	the	increments for	the	prior	observation	ensemble																		
(this	is	a	scalar	problem	for	uncorrelated	observation	errors).
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How an Ensemble Filter Works for Geophysical Data Assimilation

5. Use	ensemble	samples	of	y and	each	state	variable	to	linearly	
regress	observation	increments	onto	state	variable	increments.

Nanjing	DA	Tutorial,	29	Aug.	2017
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How an Ensemble Filter Works for Geophysical Data Assimilation

5. Use	ensemble	samples	of	y and	each	state	variable	to	linearly	
regress	observation	increments	onto	state	variable	increments.

Theory:	impact	of	observation	
increments	on	each	state	
variable	can	be	handled	
independently!
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How an Ensemble Filter Works for Geophysical Data Assimilation

6. When	all	ensemble	members	for	each	state	variable	are	
updated,	integrate	to	time	of	next	observation	…

Nanjing	DA	Tutorial,	29	Aug.	2017
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How an Ensemble Filter Works for Geophysical Data Assimilation

For large models, regression of increments onto each state 
variable dominates time.
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Parallelizing Implementation of the Regression

Ensemble Member 1 Ensemble Member 2

Ensemble Member 3 Ensemble Member 4

PE 1 PE 2 PE 3 PE 4

Simple example:
4 Ensemble members;
4 PEs (colors).

Observation shown by red star.

Data layout (option 1):
Each process stores all ensemble copies of subset of state.

Nanjing	DA	Tutorial,	29	Aug.	2017
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Parallelizing Implementation of the Regression

Ensemble Member 1 Ensemble Member 2

Ensemble Member 3 Ensemble Member 4

PE 1 PE 2 PE 3 PE 4

One PE broadcasts obs. increments.

All ensemble members for each state 
variable are on one PE.

Can compute state mean, variance 
without communication.

All state increments computed in 
parallel.

Data layout (option 1):
Each process stores all ensemble copies of subset of state.

Nanjing	DA	Tutorial,	29	Aug.	2017
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Computing Forward Operators

Ensemble Member 1 Ensemble Member 2

Ensemble Member 3 Ensemble Member 4

PE 1 PE 2 PE 3 PE 4

Computing forward operator, h, 
is often local interpolation.

Most observations require no 
communication.

Those near boundaries or 
more complex operators 
require communication.

Data layout (option 1):
Each process stores all ensemble copies of subset of state.
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Load Balancing Issues for Regression with Localization

Observation impact usually 
localized, reduces errors.

Observation in N. Pacific not 
expected to change Antarctic 
state.

PE4 lots of work, PE1 has none.

Data layout (option 1):
Each process stores all ensemble copies of subset of state.

Ensemble Member 1 Ensemble Member 2

Ensemble Member 3 Ensemble Member 4

PE 1 PE 2 PE 3 PE 4

Nanjing	DA	Tutorial,	29	Aug.	2017
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Load Balancing Issues for Regression with Localization

Can balance load by 
‘randomly’ assigning state 
variables to PEs.

Data layout (option 2):
Each process stores all ensemble copies of subset of state.

Ensemble Member 1 Ensemble Member 2

Ensemble Member 3 Ensemble Member 4

PE 1 PE 2 PE 3 PE 4
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Load Balancing Issues for Regression with Localization

Can balance load by 
‘randomly’ assigning state 
variables to PEs.

Now computing forward 
operators, h, requires 
communication.

Data layout (option 2):
Each process stores all ensemble copies of subset of state.

Ensemble Member 1 Ensemble Member 2

Ensemble Member 3 Ensemble Member 4

PE 1 PE 2 PE 3 PE 4
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Eliminating Communication for Forward Operators

If each PE has a complete 
ensemble, forward operators 
require no communication.

Data layout (option 3):
Entire state for each ensemble on single PE.

Ensemble Member 1 Ensemble Member 2

Ensemble Member 3 Ensemble Member 4

PE 1 PE 2 PE 3 PE 4

Nanjing	DA	Tutorial,	29	Aug.	2017
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Eliminating Communication for Forward Operators

If each PE has a complete 
ensemble, forward operators 
require no communication.

Many forward operators could 
be done at once.

Data layout (option 3):
Entire state for each ensemble on single PE.

Ensemble Member 1 Ensemble Member 2

Ensemble Member 3 Ensemble Member 4

PE 1 PE 2 PE 3 PE 4

Nanjing	DA	Tutorial,	29	Aug.	2017
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Best of Both Worlds? Using a Data Transpose.

Do a data transpose between 
options 3 and 2, using all to all 
communication.

Then do state increments for 
each observation sequentially.

Two Data layouts:
Option 2 for regression, Option 3 for forward operators

Ensemble Member 1 Ensemble Member 2

Ensemble Member 3 Ensemble Member 4

PE 1 PE 2 PE 3 PE 4

Nanjing	DA	Tutorial,	29	Aug.	2017
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Best of Both Worlds? Using a Data Transpose.

Whole model state 
available to a single 
processor.

All copies of some 
variables 
available to a 
single processor

Nanjing	DA	Tutorial,	29	Aug.	2017
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Two Data layouts:
Option 2 for regression, Option 3 for forward operators
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Problems with Using a Data Transpose.

1. Lots of communication, have to move all the data.
2. Not memory scalable, whole state must fit on a PE.
3. Load balancing for forward operators.
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Ensemble size 4 example.
4 tasks have a whole copy of 
the model state.

Other tasks have no data 
and nothing to do during 
forward operators.

P1 P2 P3 P4
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3
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4

P5 P9 P10 P11P6 P7 P8
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Avoiding the Transpose: Forward Operators with Distributed State

Use MPI2 one sided communication to 
grab state elements for forward operators.

Reduces data movement.

Removes hard memory limit.

Allows Vectorization of forward operator calculations.
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P1     P2      P3     P4      P5
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MPI2 One Sided Communication

Me

Have my process and a set of other processes.
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MPI2 One Sided Communication

Me

Everyone 
Else

Have my process and a set of other processes.
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MPI2 One Sided Communication

Everyone 
Else

Me

window

Can place any of my data in a virtual window.
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MPI2 One Sided Communication

Everyone 
Else

Me

window

Any other task can asynchronously grab data in ‘window’.

Nanjing	DA	Tutorial,	29	Aug.	2017
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MPI2 One Sided Communication

Old: 4 tasks doing 
all observations 
for 1 copy.

New: Lots of tasks doing some 
observations for all copies. 
Vectorizes, too.

Memory scales for forward operators; allows large models. 
Computation of forward operators also scales and balances. 

Nanjing	DA	Tutorial,	29	Aug.	2017
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WRF (regional weather forecast model) Results

Nanjing	DA	Tutorial,	29	Aug.	2017

Example problem specification:

Ø 184 million model state variables
Ø 1.5 GB per ensemble member

Ø 50 Ensemble members
Ø O(100,000) observations
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WRF (regional weather forecast model) Results
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Hardeware specification:

Ø NCAR’s Yellowstone:
Ø Intel Sandybridge
Ø 16 cores per node
Ø 25 GB usable memory per node
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WRF Results: Memory Scaling
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WRF Results: Computational Scaling for Assimilation
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Very similar with 8 tasks per node.
New with 16 tasks/node slightly slower (memory overhead)
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WRF Results: Bonus, I/O Scaling Improves
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Total time scales much better for new (RMA).
Almost all due to writing separate output from each node.
Not gathering and doing single write.
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Focus	on	Specific	Routines	with	Favorable	Characteristics:

Ø High	number	of	floating	point	instructions,

Ø Reasonably	high	floating	point	instructions	per	load/store,	

Ø Isolated	code	– each	process	works	on	its	own	local	data,

§ Can	develop	on	one	node,	but	apply	to	multinode runs.

Nanjing	DA	Tutorial,	29	Aug.	2017

Making	Effective	Use	of	Coprocessors
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Example:	subroutine	get_close

Nanjing	DA	Tutorial,	29	Aug.	2017

Making	Effective	Use	of	Coprocessors

For	a	given	observation	computes:
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For	a	given	observation	computes:

§ Number	of	state	variables	(or	obs)	
within	the	localization	radius,

§ Distances	to	close	state	variables,
§ Indices	of	the	close	states.

Nanjing	DA	Tutorial,	29	Aug.	2017

Making	Effective	Use	of	Coprocessors

Example:	subroutine	get_close
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GPU	Algorithm	for	get_close:
Implemented	in	CUDA	Fortran	for	NVIDIA	GPUS	by	Ye	Feng

Thread

Key	idea	for	GPU	implementation	reduce	branching.

id dist

1

2

3

4

5

6

7

8

Each	thread	
calculates	a	
distance
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Making	Effective	Use	of	Coprocessors
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Thread

id dist diff

1

2

3

4

5

6

7

8

Most	Significant	Bit	
of	(dist – cutoff)	

1,	dist<cutoff	(close)

0,	dist>cutoff	(not	close)

Nanjing	DA	Tutorial,	29	Aug.	2017

Making	Effective	Use	of	Coprocessors

Key	idea	for	GPU	implementation	reduce	branching

GPU	Algorithm	for	get_close:
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Thread

id dist diff sum

1

2

3

4

5

6

7

8

Prefix	Sum	
of	diff

Last	element	gives	number	of	close	obs
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Making	Effective	Use	of	Coprocessors

Key	idea	for	GPU	implementation	reduce	branching

GPU	Algorithm	for	get_close:
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Thread

id dist diff sum

1

2

3

4

5

6

7

8

diff
sum

diff	x	sum
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Making	Effective	Use	of	Coprocessors

Key	idea	for	GPU	implementation	reduce	branching

GPU	Algorithm	for	get_close:
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Thread

id dist diff sum

1

2

3

4

5

6

7

8

close	
dist

diff
sum

diff	x	dist
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Making	Effective	Use	of	Coprocessors

Key	idea	for	GPU	implementation	reduce	branching

GPU	Algorithm	for	get_close:
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Thread

id dist diff sum

1

2

3

4

5

6

7

8

close	
dist

diff
sum

distanceobservation
index
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Making	Effective	Use	of	Coprocessors

Key	idea	for	GPU	implementation	reduce	branching

GPU	Algorithm	for	get_close:
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Thread

id dist diff sum

1

2

3

4
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8

close	
dist

diff
sum

distanceobservation
index

output	index
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Making	Effective	Use	of	Coprocessors

Key	idea	for	GPU	implementation	reduce	branching

GPU	Algorithm	for	get_close:
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Making	Effective	Use	of	Coprocessors
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Ø General	purpose	ensemble	filters	can	scale	well	to	many	processes.

Ø Large	geophysical	problems	can	scale	easily	to	O(10000)	processes.

Ø General	purpose	facility	must	support	flexible	data	distribution.

Ø IO	is	fast	becoming	the	biggest	bottleneck.

Ø Efficient	use	of	coprocessors	may	be	possible.

Ø A	parallel	implementation	simulation	facility	is	useful.

Nanjing	DA	Tutorial,	29	Aug.	2017

Conclusions
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