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Motivation
• Many observations in practice are available within a
limited interval of actual variation due to the
detection limit of the gauge or sensor.

• e.g. SMOS retrieved sea-ice thickness (upper detection
limit 50 cm).

• To use the qualitative information available from the
out-of-range observations (OR-observations), which
were discarded as “not a number” otherwise.

• Very few studies carried out dealing OR-observations
Borup et. al. (2015).



Observation with detection limit
• It is a truncated observation likelihood function. 

• It can be characterized as:
– In-range observations(referred as hard data): 
– Out-range observations(referred as soft data):  
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Methodology: Our Approach
• Within the Bayesian framework, the goal of DA is to

estimate the posterior distribution.

• Bayes’ Rule:

• For an observation with a detection limit the update
equation can be split into 2, depending on the nature of
the observations; i.e.
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Ensemble members given OR-obs

• To obtain posterior estimate of individual
ensemble member given OR-observations.

• To apply eq. (1) for individual member, we
need an assumption about OR-observation
likelihood.



• Borup et al. (2015) assumes a uniform OR-obs likelihood
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• Instead of a uniform likelihood, we assume a 2-piece Gaussian distribution
(Gibbons, 1973) as a OR-obs likelihood

where is a normalizing constant

y

p(
y|

x)
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• Std. of the Gaussian half in the observable range is
determined by the in-range observation uncertainty

• Std. of the half in the unobservable range is an arbitrary
choice, which can be determined from the climatological
data (if available) or by making an educated guess
knowing that the extremely high values are less likely.
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Why 2-piece Gaussian OR-obs likelihood?

• Closest choice to the assumption of Gaussianity in
the EnKF.

• Uniform OR-obs likelihood gives equal weight to all
values until its bounds, which is rarely a case in
practice.



Ensemble Kalman Filter - Semi Qualitative
(EnKF-SQ)

• For hard data the posterior in the Bayesian
update is the product of two Gaussians: i.e.,
the prior and the observation likelihood.

• For the OR-obs it is the product of Gaussian
prior and a 2-piece Gaussian OR-observation
likelihood.



Illustration of a scenario when the prior distribution is inside (left) and outside
(right) the observable range for the 2-piece Gaussian OR-observations
likelihood.
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Flow chart for the implementation of EnKF-SQ
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limit, which is scalar.



Numerical Experiments

• Newly developed DA scheme is tested under the
framework of twin experiments with a toy model:
– Lorenz 96 (40 variable chaotic non-linear model)

• Sensitivity Experiments for:
– Ensemble size
– Observation frequency (linear to non-linear regimes)



– Detection limit for observations (more to less
observable)

– Number of observation (densely to sparsely obs.
network)

– Model forcing (via forcing parameter)

• The performance of the EnKF-SQ DA scheme
is inspected with following diagnostic tools:
– Root mean square error
– Average Ensemble spread



• RMSE and ensemble spread of the EnKF-SQ and EnKF (Ignored). Assimilating
observations at every day and 80% of observations are out-of-range

• The RMSE and ensemble spread are more consistent in EnKF-SQ compare to the
EnKF(Ignored)
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• Detection limit on observations is such that 80% of observations falls out-of-range on 
average for total integration time. Assimilating observations at every day
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• RMSE of the analysis for the varying detection limit leading to change in the number of
observations out-of-range.
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• RMSE of the analysis for the varying observation frequency i.e., increasing the
assimilation time window



Conclusion and Future work
• Assimilating OR-observations i.e., qualitative data:
– Improves the quality of forecast
– Reduces uncertainty
– Produces reliable forecasts

• Adding strong model error deteriorates the
performance of the proposed DA scheme.

• Implementing it with complex and higher dimensional
model.




