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Schematic of a Sequential Ensemble Filter

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.



Schematic of a Sequential Ensemble Filter

2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member.

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially.

Can think about single 
observation without (too 
much) loss of generality.



Schematic of a Sequential Ensemble Filter

3. Get observed value and observational error distribution
from observing system.



Schematic of a Sequential Ensemble Filter

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).

Ensemble Kalman filters assume 
Gaussianity for this problem. 

Can compute increments without 
Gaussian assumptions. (Old news).



Schematic of a Sequential Ensemble Filter

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).

Students, faculty: Lots of cool 
problems still to be explored for 
non-Gaussian likelihoods. Contact 
me if interested.



Schematic of a Sequential Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Theory: impact of observation 
increments on each state 
variable can be handled 
independently!



Schematic of a Sequential Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Can solve this bivariate problem 
in other ways. Topic of this talk.



Schematic of a Sequential Ensemble Filter

6. When all ensemble members for each state variable are 
updated, there is a new analysis. Integrate to time of next 
observation …



pg 10

Standard ensemble filters just use bivariate sample 
regression to compute state increments.

AMS, 9 January 2018

Focus on the Regression Step

Dxi,n=bDyn,
n=1,…N.

N is ensemble size.
b is regression    

coefficient.
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Will explore using different ‘regression’ for each 
ensemble member to compute increments for xi

AMS, 9 January 2018

Focus on the Regression Step

Dxi,n=bnDyn,
n=1,…N.

N is ensemble size.
bn is ‘local’ regression    

coefficient.
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Nonlinear Regression Example

Try to exploit nonlinear 
prior relation between a 
state variable and an 
observation.

Example: Observation 
y~xn, for instance y=T4.
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Standard Ensemble Kalman Filter (EAKF)
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Nongaussian Filter (Rank Histogram Filter)
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Local Linear Regression

Relation between observation and state is nonlinear.

Try using ’local’ subset of ensemble to compute regression.

What kind of subset?

Cluster that contains ensemble member being updated.
Lots of ways to define clusters.
Here, use naïve closest neighbors in (x,y) space.
Vary number of nearest neighbors in subset.
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Local Linear Regression

Local ensemble subset is 
nearest ½ . Regression 
approximates local slope 
of the relation.
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Local Linear Regression

Local ensemble subset is 
nearest ½ . Regression 
approximates local slope 
of the relation.

Highlighted red increment 
uses least squares fit to 
ensemble members in region.
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Local Linear Regression

Slope more accurate 
locally, but a disaster 
globally.

Highlighted red increment 
uses least squares fit to 
ensemble members in region.



pg 19AMS, 9 January 2018

Local Linear Regression

Note similarity to 
Houtekamer’s method, 
except local ensemble 
members are used, rather 
than non-local.

Highlighted red increment 
uses least squares fit to 
ensemble members in region.
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Local Linear Regression with Incremental Update

Local slope is just that, local.

Following it for a long way is a bad idea.
Will use a Bayesian consistent incremental update.

Observation with error variance s.
Assimilate k observations with this value.
Each of these has error variance s/k.
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Incremental Update

This is an RHF update 
with 4 increments. 
Individual increments 
highlighted for two 
ensemble members.

For an EAKF, posterior 
would be identical to 
machine precision.

Nearly identical for RHF.
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Local Linear Regression with Incremental Update

2 increments with subsets 
½ ensemble.

Posterior for state 
qualitatively improving.



pg 23AMS, 9 January 2018

Local Linear Regression with Incremental Update

4 increments with subsets 
½ ensemble.

Posterior for state 
qualitatively improving.
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Local Linear Regression with Incremental Update

8 increments with subsets 
½ ensemble.

Posterior for state 
qualitatively improving.
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Local Linear Regression with Incremental Update

8 increments with subset 
1/4 ensemble.

Posterior for state 
degraded.

Increment is moving 
outside of local linear 
validity.
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Local Linear Regression with Incremental Update

16 increments with subset 
1/4 ensemble.

Posterior for state 
improved.
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Local Linear Regression with Incremental Update

If relation between observation and state is locally a 
continuous, smooth (first two derivatives continuous) 
function:
Then, in the limit of a large ensemble, fixed local subset 
size, and large number of increments: 

The local linear regression with incremental update 
converges to the correct posterior distribution.
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Local Linear Regression with Incremental Update

If relation between observation and state is locally a 
continuous, smooth (first two derivatives continuous) 
function:
Then, in the limit of a large ensemble, fixed local subset 
size, and large number of increments: 

The local linear regression with incremental update 
converges to the correct posterior distribution.

This could be very expensive,
No guarantees about what goes on in the presence of noise.
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Multi-valued, not smooth example.

Similar in form to a wind 
speed observation with 
state velocity component.
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Multi-valued, not smooth example.

Standard regression does 
not capture bimodality of 
state posterior.
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Multi-valued, not smooth example.

Local regression with ½ of 
the ensemble does much 
better. 

Captures bimodal 
posterior.

Note problems where 
relation is not smooth.
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Multi-valued, not smooth example.

Local regression with1/4 
of the ensemble does 
even better. 

No need for incremental 
updates here.
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Discontinuous example.

Example of threshold 
process. Like 
measurement of rainfall 
rate and state variable of 
low-level temperature.
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Discontinuous example.

Basic RHF does well on 
this, but it’s an ’accident’.
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Discontinuous example.

Local regression with the 
two obvious clusters 
leads to ridiculous 
posterior.

Lack of continuity of 
bivariate prior makes any 
regression-like update 
problematic.
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Local Regression with Noisy Priors

Most geophysical 
applications have noisy 
bivariate priors. 

Usually hard to detect 
nonlinearity (even this 
example is still pretty 
extreme).
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Local Regression with Noisy Priors

Basic RHF can still be 
clearly suboptimal.
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Local Regression with Noisy Priors

This result is for local 
ensemble with nearest ½ 
of ensemble and 8 
increments.

Need bigger local 
ensembles to reduce 
sampling errors. 
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Local Regression with Noisy Priors

This result is for local 
ensemble with nearest 
1/4 of ensemble and 8 
increments.

The small ensemble 
subsets lead to large 
sampling error. Probably 
worse than standard RHF.
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Standard model configuration, perfect model.
Observation at location of each of the state variables.
Two observation frequencies: every step, every 12 steps.
Three observation types: state, square of state, log of state.
Observation error variance tuned to give time mean RMSE of 
approximately 1.0 for basic RHF.
80 total ensemble members.

For local regression:
Local subsets of 60 members (pretty large). 
4 increments.

Tuned adaptive inflation standard deviation, localization for 
lowest RMSE in base RHF case.

Results: Lorenz96
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Observations of state:
Results from base RHF and local regression statistically 
indistinguishable.

Observations of square of state:
Results from local regression are significantly better, but filter 
suffers occasional catastrophic divergence.
Must be restarted in these cases.

Observations of log of state:
Results from local regression are significantly better.

Results: Lorenz96
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Evolution of surface pressure field every 12 hours.
Has baroclinic instability: storms move east in midlatitudes.

AMS, 9 January 2018

Low-Order Dry Dynamical Core
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Conclusions

Sequential ensemble filters can:
Apply non-Gaussian methods in observation space,
Nonlinear methods for bivariate regression.

Local regression with incremental update can be effective 
for locally smooth, continuous relations. Useful for:

Nonlinear forward operators,
Transformed state variables (log, anamorphosis, …).

Can be expensive for ’noisy’ bivariate priors:
Requires large subsets (hence large ensembles),
Subsets can be found efficiently,
Incremental update is a multiplicative cost.
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Conclusions

Hard to beat standard regression for many applications.

Being smart about when to apply nonlinear methods is key.
Detect nonlinear bivariate priors automatically.
Apply appropriate methods.

Multivariate relations may still be tricky.
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www.image.ucar.edu/DAReS/DART

All results here with DARTLAB tools 
freely available in DART.


