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1.1 Background

4 distinct inflation categories:
I Background covariance inflation

1. Additive inflation, [Mitchell and Houtekamer 2000]
2. Multiplicative inflation, [Anderson and Anderson 1999]

I Observation error variance inflation
I Moderation, [Sakov et al. 2012; Karspeck 2016]
I Adaptive, [Minamide and Zhang 2017]

I Relaxation to prior
I Perturbation (RTPP), [Zhang et al. 2004]
I Spread (RTPS), [Whitaker and Hamill 2012; Ying and Zhang 2015]

I Ensemble modification
I its size, [Uzunoglu 2007]
I its physical and model-based nature [Meng and Zhang 2007; Berner

et al. 2009]

I Others: EnTLHF [Luo and Hoteit 2011], EnKF-N [Bocquet et al. 2015]
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1.2 Inflation and Innovation Statistics
Given a scalar variable with sample xi and observation y

xb =
1
Ne

Ne∑
i=1

xi , σ̂b
2 =

1
Ne − 1

Ne∑
i=1

(xi − xb)
2 (1)

Following Desroziers et al. (2005)

d = y − xb = εo + (xt − xb) = εo + εb, (2)
E (d) = E (εo) + E (εb) = 0, (3)

E
(
d2) = E

(
ε2o
)
+ E

(
ε2b
)
+ 2E (εoεb) = σ

2
o + σ

2
b. (4)

Impose σ2
b = λo σ̂b

2. Assuming a correctly specified σ2
o

⇒ λo =
E
(
d2
)
− σ2

o

σ̂b
2 (5)
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1.3 Anderson (2009), A09 hereafter

p (λ|d) ∝ p (d |λ) · p (λ) (6)

I Prior marginal distribution: N
(
λb,σ

2
λb

)

I Likelihood: d ∼ N
(
0, θ2

)
, with θ2 = λko σ̂b

2 + σ2
o

I Spread the information across all variables

r = corr(xo , xk) k = 1, 2, . . . ,Nx (7)

λko =
[
γ
(
λkb − 1

)
+ 1
]2

, γ = κ|r | (8)

I p (d |λ) is not Gaussian in λ!

I Posterior:

p (λ|d) ∝ 1
2πθσλb

exp

[
−
(λ− λb)

2

2σ2
λb

−
d2

2θ2

]
(9)
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2.1 Enhanced Scheme: The Likelihood
I σ2

o is incorrectly specified, or when λo < 0 (likelihood peak)?

λo =
E
(
d2
)
− σ2

o

σ̂b
2

I Here, assume the distance to be a random variable:

1
Ne

Ne∑
i=1

d2
i︸ ︷︷ ︸

≈

(
1
Ne

Ne∑
i=1

di

)2

+ V(d)

= σ2
o + σ

2
b +

Ne − 1
Ne

σ̂b
2, (10)

where di = εo + εb − x̃i and V(d): innovation sample variance.

I Modifies the inflation likelihood:

λ∗o =
E
(
d2
)
− σ2

o

σ̂b
2 +

1
Ne

= λo +
1
Ne

(11)
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2.2 Enhanced Scheme: The Prior

I Instead of a Gaussian, describe the inflation prior by an inverse
Gamma (IG) distribution. Why?

I Restriction: to positive and not very close to zero values
I More stable + cleaner code

I Best possible choices for α and β?

p (λ) =
βα

Γ (α)
λ−α−1 exp

[
−
β

λ

]
(12)

I Start with a Gaussian N
(
λb,σ

2
λb

)
. Use mean and variance

parameters to find α and β

λb =
β

α+ 1
≡ ModeIG (13)

σ2
λb

=
β2

(α− 1)2 (α− 2)
, α > 2 (14)

I Cubic equation (single positive root), (i) find β, (ii) deduce α
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2.3 Enhanced Scheme: The Posterior

I The new posterior is assumed IG

βαλ−α−1
√
2πθΓ (α)

exp

[
−

d2

2θ2 −
β

λ

]
(15)

I To find the updated inflation or the mode, i.e., λu(
1−

λb
β

)
λ2 +

(
`

` ′
− 2λb

)
λ+

(
λ2
b −

`

` ′
λb

)
= 0 (16)

I Posterior variance can be numerically obtained. It can both
increase & decrease

I In DART, the user only deals with Gaussian input/output
inflation fields

I Lower bound can be set to zero (allow for deflation)



7/13

2.3 Enhanced Scheme: The Posterior

I The new posterior is assumed IG

βαλ−α−1
√
2πθΓ (α)

exp

[
−

d2

2θ2 −
β

λ

]
(15)

I To find the updated inflation or the mode, i.e., λu(
1−

λb
β

)
λ2 +

(
`

` ′
− 2λb

)
λ+

(
λ2
b −

`

` ′
λb

)
= 0 (16)

I Posterior variance can be numerically obtained. It can both
increase & decrease

I In DART, the user only deals with Gaussian input/output
inflation fields

I Lower bound can be set to zero (allow for deflation)



7/13

2.3 Enhanced Scheme: The Posterior

I The new posterior is assumed IG

βαλ−α−1
√
2πθΓ (α)

exp

[
−

d2

2θ2 −
β

λ

]
(15)

I To find the updated inflation or the mode, i.e., λu(
1−

λb
β

)
λ2 +

(
`

` ′
− 2λb

)
λ+

(
λ2
b −

`

` ′
λb

)
= 0 (16)

I Posterior variance can be numerically obtained. It can both
increase & decrease

I In DART, the user only deals with Gaussian input/output
inflation fields

I Lower bound can be set to zero (allow for deflation)



8/13

2.3 Enhanced Scheme: G17 hereafter
• Example: from an L63 DA run
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⇒ using G17: λu = 0.90

I Gharamti, M. E. (2017). Enhanced Adaptive Inflation
Algorithm for Ensemble Filters. Monthly Weather Review, in
press.
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3.1 CAM (The Community Atmosphere Model)

I version: CESM2_0_beta05
I resolution: 1.9◦ × 1.9◦ FV core;

LAT: 96, LON: 144, LEV: 26

I single state spinup, 80 members
ensemble initialization

I DA (EAKF) between 08.16.2010
to 09.30.2010

I data available every 6 hours:
wind and temperature
observations from radiosondes,
ACARS and aircraft along with
GPS radio occultation

I Localization cutoff: 0.15 rad
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3.2 Assimilation Results: A09 vs. G17
Obs. Space Diagnostics: RMSE

I Both schemes
initialized with
λ ∼ N(1, 0.36)

I inflation variance
is fixed

I Largest
improvements:
Tropics &
Southern H.

I improved GPSRO
near surface
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3.2 Assimilation Results: A09 vs. G17
Obs. Space Diagnostics: Bias, Consistency and Profiles

I ∼ 10% improvements
in the Tropics

I Suggested (average)
improvements of wind
estimates using G17

- Radiosondes: 1.5%
- Aircrafts: 4.24%
- Acars: 4.95%
- Satellite: 0.41%

I Both schemes assimilate
almost the same number
of observations (<1%
difference)
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3.2 Assimilation Results: A09 vs. G17
Inflation Fields and Patterns
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4. Conclusion

I Proposed an enhanced spatially and temporally varying
adaptive prior covariance inflation

I The prior distribution is assumed IG and the likelihood density
is slightly shifted to larger distances

I Improvements using the DART-CAM framework are observed
for different observation types and mainly for near-surface
GPSRO observations

I In the Tropics and the Southern Hemisphere, the proposed
scheme outperforms the original inflation algorithm. In the
Northern Hemisphere, both schemes yield comparable results

I A09 over-inflates in the N. H. G17 allows for slight deflation
especially in the central Pacific. Inflation maps obtained using
both schemes are highly correlated.
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