

Adaptive Prior Inflation for Ensemble Filters: Application to a Large-Scale Atmospheric Model

Mohamad (Moha) E. Gharamti, NCAR, Boulder, CO

American Meteorological Society, 98TH Annual Meeting 22ND Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface [Austin, TX]

E-mail: gharamti@ucar.edu

DAReS Group: http://www.image.ucar.edu/DAReS/DART/

Table of Contents

Adaptive Inflation Review

Background and Innovations Statistics Anderson's Scheme

Enhanced Adaptive Inflation Algorithm

The Likelihood The Prior The Posterior

DA using CAM: The Community Atmosphere Model

Conclusions

- 4 distinct inflation categories:
 - Background covariance inflation
 - 1. Additive inflation, [Mitchell and Houtekamer 2000]
 - 2. Multiplicative inflation, [Anderson and Anderson 1999]

- 4 distinct inflation categories:
 - Background covariance inflation
 - 1. Additive inflation, [Mitchell and Houtekamer 2000]
 - 2. Multiplicative inflation, [Anderson and Anderson 1999]
 - Observation error variance inflation
 - Moderation, [Sakov et al. 2012; Karspeck 2016]
 - Adaptive, [Minamide and Zhang 2017]

- 4 distinct inflation categories:
 - Background covariance inflation
 - 1. Additive inflation, [Mitchell and Houtekamer 2000]
 - 2. Multiplicative inflation, [Anderson and Anderson 1999]
 - Observation error variance inflation
 - Moderation, [Sakov et al. 2012; Karspeck 2016]
 - Adaptive, [Minamide and Zhang 2017]
 - Relaxation to prior
 - Perturbation (RTPP), [Zhang et al. 2004]
 - ► Spread (RTPS), [Whitaker and Hamill 2012; Ying and Zhang 2015]

- 4 distinct inflation categories:
 - Background covariance inflation
 - 1. Additive inflation, [Mitchell and Houtekamer 2000]
 - 2. Multiplicative inflation, [Anderson and Anderson 1999]
 - Observation error variance inflation
 - Moderation, [Sakov et al. 2012; Karspeck 2016]
 - Adaptive, [Minamide and Zhang 2017]
 - Relaxation to prior
 - Perturbation (RTPP), [Zhang et al. 2004]
 - Spread (RTPS), [Whitaker and Hamill 2012; Ying and Zhang 2015]
 - Ensemble modification
 - ▶ its size, [Uzunoglu 2007]
 - its physical and model-based nature [Meng and Zhang 2007; Berner et al. 2009]

- 4 distinct inflation categories:
 - Background covariance inflation
 - 1. Additive inflation, [Mitchell and Houtekamer 2000]
 - 2. Multiplicative inflation, [Anderson and Anderson 1999]
 - Observation error variance inflation
 - Moderation, [Sakov et al. 2012; Karspeck 2016]
 - Adaptive, [Minamide and Zhang 2017]
 - Relaxation to prior
 - Perturbation (RTPP), [Zhang et al. 2004]
 - Spread (RTPS), [Whitaker and Hamill 2012; Ying and Zhang 2015]
 - Ensemble modification
 - ▶ its size, [Uzunoglu 2007]
 - its physical and model-based nature [Meng and Zhang 2007; Berner et al. 2009]
 - ► Others: EnTLHF [Luo and Hoteit 2011], EnKF-N [Bocquet et al. 2015]

1.2 Inflation and Innovation Statistics

Given a scalar variable with sample x_i and observation y

$$x_b = \frac{1}{N_e} \sum_{i=1}^{N_e} x_i, \qquad \widehat{\sigma_b}^2 = \frac{1}{N_e - 1} \sum_{i=1}^{N_e} (x_i - x_b)^2$$
 (1)

Following Desroziers et al. (2005)

$$d = y - x_b = \varepsilon_o + (x_t - x_b) = \varepsilon_o + \varepsilon_b, \qquad (2)$$

$$\mathbb{E}(d) = \mathbb{E}(\varepsilon_o) + \mathbb{E}(\varepsilon_b) = 0, \qquad (3)$$

$$\mathbb{E}(d^2) = \mathbb{E}(\varepsilon_o^2) + \mathbb{E}(\varepsilon_b^2) + 2\mathbb{E}(\varepsilon_o\varepsilon_b) = \sigma_o^2 + \sigma_b^2.$$
(4)

Impose $\sigma_b^2 = \lambda_o \widehat{\sigma_b}^2$. Assuming a correctly specified σ_o^2

$$\Rightarrow \boxed{\lambda_o = \frac{\mathbb{E}\left(d^2\right) - \sigma_o^2}{\widehat{\sigma_b}^2}} \tag{5}$$

1.3 Anderson (2009), A09 hereafter

$$p(\lambda|d) \propto p(d|\lambda) \cdot p(\lambda)$$
(6)

• Prior marginal distribution: $N\left(\lambda_b, \sigma_{\lambda_b}^2\right)$

1.3 Anderson (2009), A09 hereafter

$$p(\lambda|d) \propto p(d|\lambda) \cdot p(\lambda)$$
(6)

• Prior marginal distribution: $N\left(\lambda_b, \sigma_{\lambda_b}^2\right)$

► Likelihood: $d \sim N(0, \theta^2)$, with $\theta^2 = \lambda_o^k \widehat{\sigma_b}^2 + \sigma_o^2$

Spread the information across all variables

$$r = corr(x^{o}, x^{k}) \quad k = 1, 2, ..., N_{x}$$
 (7)

$$\lambda_{o}^{k} = \left[\gamma\left(\lambda_{b}^{k}-1\right)+1\right]^{2}, \quad \gamma = \kappa |r|$$
(8)

• $p(d|\lambda)$ is not Gaussian in λ !

1.3 Anderson (2009), A09 hereafter

$$p(\lambda|d) \propto p(d|\lambda) \cdot p(\lambda)$$
(6)

• Prior marginal distribution: $N\left(\lambda_b, \sigma_{\lambda_b}^2\right)$

► Likelihood: $d \sim N(0, \theta^2)$, with $\theta^2 = \lambda_o^k \widehat{\sigma_b}^2 + \sigma_o^2$

Spread the information across all variables

$$r = corr(x^{o}, x^{k}) \quad k = 1, 2, ..., N_{x}$$
 (7)

$$\lambda_{o}^{k} = \left[\gamma\left(\lambda_{b}^{k}-1\right)+1\right]^{2}, \quad \gamma = \kappa |r|$$
(8)

• $p(d|\lambda)$ is not Gaussian in λ !

Posterior:

$$p(\lambda|d) \propto \frac{1}{2\pi\theta\sigma_{\lambda_b}} \exp\left[-\frac{(\lambda-\lambda_b)^2}{2\sigma_{\lambda_b}^2} - \frac{d^2}{2\theta^2}\right]$$
 (9)

2.1 Enhanced Scheme: The Likelihood

• σ_o^2 is incorrectly specified, or when $\lambda_o < 0$ (likelihood peak)?

$$\lambda_{o} = \frac{\mathbb{E}\left(d^{2}\right) - \sigma_{o}^{2}}{\widehat{\sigma_{b}}^{2}}$$

• Here, assume the distance to be a random variable:

$$\underbrace{\frac{1}{N_e}\sum_{i=1}^{N_e} d_i^2}_{\approx} = \sigma_o^2 + \sigma_b^2 + \frac{N_e - 1}{N_e} \widehat{\sigma_b}^2, \quad (10)$$
$$\approx \left(\frac{1}{N_e}\sum_{i=1}^{N_e} d_i\right)^2 + \mathbb{V}(d)$$

where $d_i = \varepsilon_o + \varepsilon_b - \widetilde{x}_i$ and $\mathbb{V}(d)$: innovation sample variance.

2.1 Enhanced Scheme: The Likelihood

• σ_o^2 is incorrectly specified, or when $\lambda_o < 0$ (likelihood peak)?

$$\lambda_{o} = \frac{\mathbb{E}\left(d^{2}\right) - \sigma_{o}^{2}}{\widehat{\sigma_{b}}^{2}}$$

• Here, assume the distance to be a random variable:

$$\underbrace{\frac{1}{N_e}\sum_{i=1}^{N_e} d_i^2}_{\approx} = \sigma_o^2 + \sigma_b^2 + \frac{N_e - 1}{N_e} \widehat{\sigma_b}^2, \quad (10)$$
$$\approx \left(\frac{1}{N_e}\sum_{i=1}^{N_e} d_i\right)^2 + \mathbb{V}(d)$$

where $d_i = \varepsilon_o + \varepsilon_b - \widetilde{x}_i$ and $\mathbb{V}(d)$: innovation sample variance. Modifies the inflation likelihood:

$$\left(\lambda_o^* = \frac{\mathbb{E}\left(d^2\right) - \sigma_o^2}{\widehat{\sigma_b}^2} + \frac{1}{N_e} = \lambda_o + \frac{1}{N_e}\right)$$
(11)

2.2 Enhanced Scheme: The Prior

- Instead of a Gaussian, describe the inflation prior by an inverse Gamma (IG) distribution. Why?
 - Restriction: to positive and not very close to zero values
 - More stable + cleaner code

2.2 Enhanced Scheme: The Prior

- Instead of a Gaussian, describe the inflation prior by an inverse Gamma (IG) distribution. Why?
 - Restriction: to positive and not very close to zero values
 - More stable + cleaner code
- Best possible choices for α and β ?

$$p(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{-\alpha-1} \exp\left[-\frac{\beta}{\lambda}\right]$$
(12)

2.2 Enhanced Scheme: The Prior

- Instead of a Gaussian, describe the inflation prior by an inverse Gamma (IG) distribution. Why?
 - Restriction: to positive and not very close to zero values
 - More stable + cleaner code
- Best possible choices for α and β ?

$$p(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{-\alpha-1} \exp\left[-\frac{\beta}{\lambda}\right]$$
(12)

• Start with a Gaussian $N(\lambda_b, \sigma^2_{\lambda_b})$. Use mean and variance parameters to find α and β

$$\lambda_b = \frac{\beta}{\alpha + 1} \equiv \mathsf{Mode}_{\mathsf{IG}}$$
 (13)

$$\sigma_{\lambda_{b}}^{2} = \frac{\beta^{2}}{\left(\alpha - 1\right)^{2} \left(\alpha - 2\right)}, \qquad \alpha > 2$$
 (14)

 \blacktriangleright Cubic equation (single positive root), (i) find $\beta,$ (ii) deduce α

2.3 Enhanced Scheme: The Posterior

▶ The new posterior *is assumed IG*

$$\frac{\beta^{\alpha}\lambda^{-\alpha-1}}{\sqrt{2\pi}\theta\Gamma(\alpha)}\exp\left[-\frac{d^2}{2\theta^2}-\frac{\beta}{\lambda}\right]$$
(15)

2.3 Enhanced Scheme: The Posterior

▶ The new posterior *is assumed IG*

$$\frac{\beta^{\alpha}\lambda^{-\alpha-1}}{\sqrt{2\pi}\theta\Gamma(\alpha)}\exp\left[-\frac{d^2}{2\theta^2}-\frac{\beta}{\lambda}\right]$$
(15)

► To find the updated inflation or the mode, i.e., λ_u

$$\left(1-\frac{\lambda_b}{\beta}\right)\lambda^2 + \left(\frac{\overline{\ell}}{\ell'}-2\lambda_b\right)\lambda + \left(\lambda_b^2 - \frac{\overline{\ell}}{\ell'}\lambda_b\right) = 0 \quad (16)$$

2.3 Enhanced Scheme: The Posterior

▶ The new posterior *is assumed IG*

$$\frac{\beta^{\alpha}\lambda^{-\alpha-1}}{\sqrt{2\pi}\theta\Gamma(\alpha)}\exp\left[-\frac{d^2}{2\theta^2}-\frac{\beta}{\lambda}\right]$$
(15)

• To find the updated inflation or the mode, i.e., λ_u

$$\left(1-\frac{\lambda_b}{\beta}\right)\lambda^2 + \left(\frac{\overline{\ell}}{\ell'}-2\lambda_b\right)\lambda + \left(\lambda_b^2 - \frac{\overline{\ell}}{\ell'}\lambda_b\right) = 0 \quad (16)$$

- Posterior variance can be numerically obtained. It can both increase & decrease
- In DART, the user only deals with Gaussian input/output inflation fields
- Lower bound can be set to zero (allow for deflation)

 Gharamti, M. E. (2017). Enhanced Adaptive Inflation Algorithm for Ensemble Filters. *Monthly Weather Review*, in press.

3.1 CAM (The Community Atmosphere Model)

- version: CESM2_0_beta05
- ▶ resolution: 1.9° × 1.9° FV core; LAT: 96, LON: 144, LEV: 26

3.1 CAM (The Community Atmosphere Model)

- version: CESM2_0_beta05
- resolution: 1.9° × 1.9° FV core; LAT: 96, LON: 144, LEV: 26
- single state spinup, 80 members ensemble initialization
- DA (EAKF) between 08.16.2010 to 09.30.2010
- data available every 6 hours: wind and temperature observations from radiosondes, ACARS and aircraft along with GPS radio occultation
- Localization cutoff: 0.15 rad

3.2 Assimilation Results: A09 vs. G17 Obs. Space Diagnostics: RMSE

- Both schemes initialized with $\lambda \sim N(1, 0.36)$
- inflation variance is fixed

 $RMS_O(i, j) - RMS_E(i, j)$

1 1 2

25

55

100

150

200

313 400

525

688

832

925

Ра 250

Prior RMSE Difference

-0,1

-0.2

-0.3

RADIOSONDE U+V WIND

Overall mean = 0.1122

RADIOSONDE TEMPERATURE

AIRCRAFT U+V WIND Overall mean = 0.0975

AIRCRAFT TEMPERATURE Overall mean - 0 1370

SAT U+V WIND Overall mean = 0.0362 25 55 100 0.5 150 200 42 250 4 313 400 -0.5 688 832 925 999 Northern H Tropics Southern H

- Largest improvements: Tropics & Southern H.
- improved GPSRO near surface

Northern H Tropics Southern H

ACARS TEMPERATURE Overall mean = -0.0123

3.2 Assimilation Results: A09 vs. G17 *Obs. Space Diagnostics: Bias, Consistency and Profiles*

3.2 Assimilation Results: A09 vs. G17

Obs. Space Diagnostics: Bias, Consistency and Profiles

- Suggested (average) improvements of wind estimates using G17
 - Radiosondes: 1.5%
 - Aircrafts: 4.24%
 - Acars: 4.95%
 - Satellite: 0.41%
- Both schemes assimilate almost the same number of observations (<1% difference)

3.2 Assimilation Results: A09 vs. G17 Inflation Fields and Patterns

3.2 Assimilation Results: A09 vs. G17 Inflation Fields and Patterns

Prior PS average inflation difference: A09 - G17

3.2 Assimilation Results: A09 vs. G17 Inflation Fields and Patterns

4. Conclusion

- Proposed an enhanced spatially and temporally varying adaptive prior covariance inflation
- The prior distribution is assumed IG and the likelihood density is slightly shifted to larger distances
- Improvements using the DART-CAM framework are observed for different observation types and mainly for near-surface GPSRO observations
- In the Tropics and the Southern Hemisphere, the proposed scheme outperforms the original inflation algorithm. In the Northern Hemisphere, both schemes yield comparable results
- A09 over-inflates in the N. H. G17 allows for slight deflation especially in the central Pacific. Inflation maps obtained using both schemes are highly correlated.