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1. Overview

The Data Assimilation Research Testbed (DART) is a com-
munity facility for ensemble data assimilation developed and
maintained at the National Center for Atmospheric Research
(NCAR). DART provides data assimilation (DA) capabilities for
nearly all NCAR community earth system models. The ensem-
ble data assimilation tools provided by DART allow NCAR mod-
els to produce ensemble forecasts. Data assimilation involves
combining short model forecasts with observations to produce
ensemble analyses that can be used for subsequent forecasts
of any length. This process of confronting the model with ob-
servations facilitates model evaluation and improvement. The
ensemble analyses and forecasts from DART enable analysis
and understanding of the earth system.

2. DART

DART has been free and publically available for more than 10
years. Building an interface between DART and a new model
does not require an adjoint and generally requires no mod-
ifications to the model code. DART works with dozens of
models and a wide variety of observations.
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dart.ucar.edu has information about how to
download DART, the DART educational materials,
and how to contact us.

DART provides both state-of-the-art ensemble data assimila-
tion capabilities and an interactive educational platform to re-
searchers and students. DART contains a variety of instruc-
tional material to appeal to different types of learning:

• a tutorial directory with 23 self-paced modules,

• a MATLAB R© tutorial with point-and-click GUI examples,

• a user Application Program Interface (API),

• a web site dedicated to explaining how to use DART, and

• real live people to answer questions!

3. Eddy-Resolving POP F. Castruccio

Goal: Develop and implement
proper high-resolution ocean
initialization procedures and
data assimilation infrastructure
to support seasonal-to-decadal
prediction with the high-
resolution versions of CESM.

DART provides the infrastructure to support ensemble DA
for the 1/10◦ eddy-resolving POP ocean model. Running a
50+ member ensemble of global eddy-resolving ocean simu-
lations is computationally prohibitive. We have implemented
the far less expensive ensemble optimal interpolation (EnOI;
Evensen, 2003) within DART. This eliminates the cost of run-
ning multiple simulations during the forecast step.
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Figure 1: As implemented within DART, the EnOI scheme
uses a static (but seasonally varying) ensemble of pre-
computed perturbations to approximate samples from the fore-
cast error covariance and uses a single model integration to
approximate the forecast mean.

Figure 2: A typical set of observations assimilated daily.
03/01/2005 shown. Clockwise from upper left: along-track SLA
≈100,000 obs, in-situ temperature from WOD13 ≈75,000 obs,
in-situ salinity from WOD13 ≈25,000 obs, OISSTv2 ≈75,000
obs.

Figure 3: The difference from the RG ARGO climatol-
ogy (http://doi.org/10.17882/42182) and the mean Tempera-
ture from 2005-2009 (remapped to the RG ARGO climatology
grid). Top row is 10m, bottom row is 100m.

• Cost of integration is down to ≈600K core-hours from ≈10M
per year of simulation with the EnKF.

• A highres hindcast forced with JRA (2000–2016) has been
run.

• A highres reanalysis (2005–2016) with DART-EnOI is under-
way.
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4. WRF-Hydro J. McCreight, M. El Gharamti, S. Noh, A.
RafieeiNasab

The Weather Research and Forecasting Hydrologic model
(WRF-Hydro) is a community modeling system and framework
for hydrologic modeling and model coupling. Combined with
DART, the facility is called HydroDART. Experiments assim-
ilating streamflow every hour for a 3 month period that en-
compasses the landfall of hurricane Florence (2018) were per-
formed to assess what is required for improved streamflow
forecasts under dry, normal, and flood conditions.

-81 -80.5 -80 -79.5 -79 -78.5 -78 -77.5 -77 -76.5 -76
Longitude

33.5

34

34.5

35

35.5

36

36.5

37

L
a

tit
u
d
e

Florence Domain: Along-the-Stream Localization (distance = 100km)

0   

0.2 

0.4 

0.6 

0.8 

0.99

Covariance
Factor

obs: gauge ID 02102500
obs: gauge ID 02082950
obs: gauge ID 02129000
obs: gauge ID 02105769
obs: gauge ID 02071000
obs: gauge ID 02091500

More than 50,000 links, more than 100 gages

Exploded view
to show detail

Figure 4: The test domain ‘Florence’ for WRF-Hydro and
DART. The domain is approximately 100,000 km2 on the Car-
olina coast. The symbols are at stream gauge locations and
the coloring depicts the localization of an observation. A local-
ization distance of 100km is used for visualization only.
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Figure 5: A representative summary of the performance of
the hourly assimilation with 80 ensemble members. The open
loop run is clearly biased high and the timing of the streamflow
does not match the gauge observations. The assimilation prior
is generally much closer to the observed streamflow, and the
posterior is better still.

4.1 Gaussian Anamorphosis
The Kalman filter (KF) update assumes the state variables to
have a Gaussian distribution. This is not true for many vari-
ables, e.g., streamflow and concentrations. Gaussian Anamor-
phosis (GA) in DA is the process of transforming the state vari-
ables and/or parameters into a Gaussian space prior to apply-
ing the KF correction. The transformations can be either con-
structed empirically following the marginal distribution or cho-
sen from various analytic forms. After the DA update, the re-
turn to the physical space is obtained using the inverse of the
anamorphosis function. Using GA:

• the KF update is applied to (near) Gaussian distributions,

• unphysical updates (e.g., negative thickness) are avoided,

• non-Gaussian features in the prior are retained in the poste-
rior, and

• obtain more reliable distributions (no truncation is needed).

Figure 6: Top: (Left) Prior streamflow distribution. The gauge
observation is denoted by a red asterisk. The dashed gray line
at 0 cms (cubic meters per second) depicts the lower bound
for streamflow. (Right) Posterior streamflow distribution after
the Kalman update. The shaded region shows the part of
the ensemble that is unphysical. Middle: (Left) Transformed
prior streamflow distribution using empirical Gaussian anamor-
phosis. (Center) Updated distribution in the Gaussian space.
(Right) The posterior distribution in physical space. Bottom
panels: (Left) Transformed prior streamflow distribution using
an analytical Gaussian anamorphosis function; the logarithm.
(Center) Updated distribution in the transformed space. (Right)
The posterior distribution in the physical space.

5. NOAH-MP MODIS & GRACE J. Liang

The Noah-multiparameterization land surface model (Noah-
MP) and DART are being used to explore the assimilation of to-
tal water storage (TWS) observations from the Gravity Recov-
ery And Climate Experiment (GRACE) satellites and MODIS
(Moderate Resolution Imaging Spectroradiometer) snow cover
fraction. The GRACE TWS observations are from a daily prod-
uct derived at the University of Texas at Austin. A single model
state was replicated for 40 ensemble members and then ad-
vanced using an ensemble of CAM forcing for 3 years to gen-
erate spread in the initial ensemble. In the following captions
OL refers to the Open Loop (no data assimilation), MOD refers
to experiments assimilating only MODIS observations, and
MOD GRA refers to experiments assimilating MODIS snow
cover fraction and GRACE TWS.

Figure 7: Differences in the Bias and RMSE TWS between
different DA runs and OL. From the top to bottom each row
indicates GRA minus OL, MOD minus OL, and MOD GRA mi-
nus OL. For each gridcell, RMSE is calculated from the time
series of each gridcell (2003.11-2004.05). The blank areas in
the plots indicate regions where observation data are missing
for more than half of the period.

6. Carbon Monitoring J. Lin, B. Raczka

• How can satellite, atmospheric in-situ, and ecological obser-
vations be combined with atmospheric and biospheric mod-
els to inform carbon budgets in regions of complex terrain?

• How is satellite-retrieved SIF related to leaf-level physiology?

• What are the impacts of drought and disturbance on carbon
cycling in mountainous regions?

We are developing and testing a new Carbon Monitoring Sys-
tem over mountains (CMS-Mountains) covering the Western
U.S., where we can leverage numerous existing efforts in bio-
spheric and atmospheric modeling. We are running the Com-
munity Land Model (CLM 5.0) and assimilating observations of
above-ground biomass (Liu et al., 2015), and leaf area index
(Zhu et al., 2013). The infrastructure for assimilating Solar-
Induced Fluorescence (SIF) from GOME-2 and OCO-2, col-
umn amounts of CO2 (XCO2) from OCO-2 and snowcover is
also being developed.

Observations of
remotely-sensed leaf
area and above-
ground biomass are
assimilated into CLM
using DART, improv-
ing the accuracy of
the model simulation
across the Western
US. Figure 8 repre-
sents the average
ensemble behavior
(80 members) across
all grid cells within
the spatial domain.

Figure 8: The improvement in simulated carbon stocks com-
paring a simulation that uses no observations, ”free”, against a
simulation that assimilates observations, ”assim”.

The assimilation of remotely-sensed observations, leads to a
redistribution of simulated biomass (Figure 9) and an overall
reduction in land carbon sink to near neutral land-atmosphere
carbon exchange (Figure 9) (Raczka et al., in prep). As the
vast majority of biomass resides in the high elevation, complex
terrain of the Rocky Mountains, this region is where the ma-
jority of the simulated biomass reduction occurs. Adjustments
in leaf area were much more subtle with increases in leaf area
within the central valley of California and southwest US (not
shown).

Figure 9: Accounting for observations of aboveground
biomass and leaf area leads to more accurate spatial distri-
butions of biomass (panel A) and a decrease in carbon sink to
the land of the Western US (panel B). Panel A describes the
difference in aboveground biomass between the ’assimilated’
and ’free’ runs during summer (Jun, Jul, Aug) of the year 2010.
Panel B shows the reduced carbon sink to land as quantified
by the net ecosystem productivity (NEP). The assimilation was
run from 1998-2011.

7. CAM Reanalysis K. Raeder

An 80-member DART reanalysis using the latest version of the
Community Atmospheric Model (CAM6-FV) at 1◦ resolution is
in production. Every 6 hours we assimilate all conventional obs
as well as AIRS and GPS. In addition to evaluating CAM’s ca-
pabilities as a forecast model, several data products are being
created and are available for public use. These include en-
sembles of dynamically consistent atmospheric forcing at 1◦ at
hourly, 3-hourly, and daily resolutions (see Figure 11). These
forcings represent the uncertainty in the knowledge of the at-
mosphere are are all equally likely. These forcings can be used
with other CESM components like CLM, POP, and CICE and
are well suited for ensemble forecasts, sensitivity studies, and
ensemble data assimilation. The full 80 member atmospheric
state is available weekly. Results for 2011 thru 2015 are avail-
able now and 2017 will be available soon to facilitate the use
of modern remote sensing platforms. 2000-present should be
available within the next year.

Figure 10: Top: The variability of the height to the middle of the
atmosphere is demonstrated by a subset of the 80 ensemble
members. The colors represent individual ensemble members.
The heavy black line is the mean of the 20 members shown
here. The lower figure highlights this variability.

Figure 11: The variability of the downward longwave heat flux
at the surface. 20 of the 80 members are shown here. The
colors represent individual ensemble members.
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