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Nonlinear, Non-Gaussian Extensions for 
Ensemble Filter Data Assimilation

Jeff Anderson, AGU, 2019

Jeff Anderson, NCAR Data Assimilation Research Section
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Bayes’ RuleOutline

Many ensemble assimilation methods are Gaussian & linear.

Tracer applications are neither.

Describe methods to deal with this.
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Bayes’ Rule

𝑃 𝐱#$|𝐘#$ =
𝑃 𝐲)|𝐱 𝑃 𝐱#$|𝐘#$*+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Bayes Rule (1D example)

Bayes rule is the key to ensemble data assimilation.
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Bayes’ Rule

𝑃 𝐱#$|𝐘#$ =
𝑃 𝐲)|𝐱 𝑃 𝐱#$|𝐘#$*+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Prior: from 
model forecast.

Bayes Rule (1D example)
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𝑃 𝐱#$|𝐘#$ =
𝑃 𝐲)|𝐱 𝑃 𝐱#$|𝐘#$*+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Likelihood: 
from instrument.

Bayes Rule (1D example)
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Product (Numerator)

𝑃 𝐱#$|𝐘#$ =
𝑃 𝐲)|𝐱 𝑃 𝐱#$|𝐘#$*+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Bayes Rule (1D example)
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Normalization (Denom.)

𝑃 𝐱#$|𝐘#$ =
𝑃 𝐲)|𝐱 𝑃 𝐱#$|𝐘#$*+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Bayes Rule (1D example)
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Posterior

𝑃 𝐱#$|𝐘#$ =
𝑃 𝐲)|𝐱 𝑃 𝐱#$|𝐘#$*+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Posterior: 
(analysis).

Bayes Rule (1D example)
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𝑃 𝐱#$|𝐘#$ =
𝑃 𝐲)|𝐱 𝑃 𝐱#$|𝐘#$*+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Bayes Rule (1D example)

Most ensemble assimilation algorithms assume Gaussians.
May be okay for quantity like temperature.
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𝑃 𝐱#$|𝐘#$ =
𝑃 𝐲)|𝐱 𝑃 𝐱#$|𝐘#$*+
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Bayes Rule (1D example)

Most ensemble assimilation algorithms assume Gaussians.
Tracer concentration is bounded. Gaussian a poor choice.
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Advection of Tracer -> Nonlinear Prior for Concentration & Wind
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Advection of Tracer -> Nonlinear Prior for Concentration & Wind

Tracer advected by 
uncertain winds.
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Advection of Tracer -> Nonlinear Prior for Concentration & Wind

Concentration 
Observed at 
Longitude 1.1

Tracer advected by 
uncertain winds.
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Advection of Tracer -> Nonlinear Prior for Concentration & Wind

Concentration 
Observed at 
Longitude 1.1

Bivariate Prior shows how
Concentration Observation
Impacts Wind.

Tracer advected by 
uncertain winds.
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Advection of Tracer -> Nonlinear Prior for Concentration & Wind

Concentration 
Observed at 
Longitude 1.1

Bivariate Prior shows how
Concentration Observation
Impacts Wind.

Tracer advected by 
uncertain winds.
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Advection of Tracer -> Nonlinear Prior for Concentration & Wind

Concentration 
Observed at 
Longitude 1.1

Bivariate Prior shows how
Concentration Observation
Impacts Wind.

Tracer advected by 
uncertain winds.
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Advection of Tracer -> Nonlinear Prior for Concentration & Wind

Concentration 
Observed at 
Longitude 1.1

Bivariate Prior shows how
Concentration Observation
Impacts Wind.

Tracer advected by 
uncertain winds.
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Advection of Tracer -> Nonlinear Prior for Concentration & Wind

Concentration 
Observed at 
Longitude 1.1

Bivariate Prior shows how
Concentration Observation
Impacts Wind.

Tracer advected by 
uncertain winds.
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Advection of Tracer -> Nonlinear Prior for Concentration & Wind

Concentration 
Observed at 
Longitude 1.1

Bivariate Prior shows how
Concentration Observation
Impacts Wind.

Tracer advected by 
uncertain winds.
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Advection of Cosine Tracer: EAKF

Try to exploit nonlinear 
prior relation between a 
state variable and an 
observation.

Example: Observation 
y~log(x). 

Also relevant for variables 
that are log transformed 
for boundedness (like 
concentrations).

MCRHF
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Challenges for Tracer Assimilation

Non-Gaussian bounded priors.

Nonlinear bivariate priors.

Solution: More general representation of priors and likelihoods.

Rank Histogram Filters for State Variables. 



Marginal Correction Rank Histogram (MCRHF)
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Have a prior ensemble for a state variable (like wind).



Marginal Correction Rank Histogram (MCRHF)
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Step 1: Get continuous prior distribution density.
• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.

1/6 of 
probability.
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Step 1: Get continuous prior distribution density.
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Marginal Correction Rank Histogram (MCRHF)
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Step 1: Get continuous prior distribution density.
• Partial gaussian kernels on tails, N(tail_mean, ens_sd).
• tail_mean selected so that (ens_size + 1)-1 mass is in tail.

1/6 of 
probability.

1/6 of 
probability.



Marginal Correction Rank Histogram (MCRHF)

Step 2: Get observation likelihood for each ensemble member.



Marginal Correction Rank Histogram (MCRHF)

Step 3: Approximate likelihood with trapezoidal quadrature. 
• Use long flat tails.



Marginal Correction Rank Histogram (MCRHF)

Step 4: Compute continuous posterior distribution.
§ Just Bayes, multiply prior by likelihood and normalize.
§ Really simple with uniform likelihood tails.



Marginal Correction Rank Histogram (MCRHF)

Step 5: Compute updated ensemble members:
• (ens_size +1)-1 of posterior mass between each ensemble pair.
• (ens_size +1)-1 in each tail.
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Advection of Cosine Tracer: MCRHF

Try to exploit nonlinear 
prior relation between a 
state variable and an 
observation.

Example: Observation 
y~log(x). 

Also relevant for variables 
that are log transformed 
for boundedness (like 
concentrations).

MCRHF



Details for Marginal Correction RHF method (MCRHF)

Do observation RHF with regression for preliminary posterior.

Get RHF State Marginal.

Rank statistics of posterior same as preliminary posterior.
Ensemble member with smallest preliminary posterior value 
gets smallest posterior value from RHF State Marginal.

Works well for many applications (but more expensive).
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MCRHF Capabilities

Ø Enforce additional prior constraints, like boundedness.

Ø Use arbitrary likelihoods.
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MCRHF with Bounded Prior

Standard MCRHF State Marginal.
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MCRHF with Bounded Prior

Bounded State Marginal, same ensemble but positive prior.

1/6 of 
probability
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Bounded State, Non-Gaussian Likelihoods

Bivariate example.

Log of prior is bivariate Gaussian, so prior is non-negative.

One variable observed. 

Likelihood is Gamma.
Shape parameter is same as first prior ensemble.
Scale parameter is 1.

Assimilate single observation for many random priors.
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Bounded State, Non-Gaussian Likelihoods

Compare Gamma likelihood to Gaussian approximation.
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Bounded State, Non-Gaussian Likelihoods

Compare 3 Methods, 4 Ensemble sizes

Observed Var. Unobserved Var. Likelihood
EAKF Regression Gaussian
RHF MCRHF Gaussian
RHF MCRHF Gamma
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Percent Negative Posterior Members
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Percent Negative Posterior Members

MCRHF both 
(red and blue) 
have 0 by design.
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RMSE of Posterior Ensemble Mean
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RMSE of Posterior Variance
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Summary

RHF filters represent non-Gaussian priors, posteriors.

MCRHF allows non-Gaussian, limited non-linearity.

Particularly applicable to bounded quantities like tracers.

MCRHF more expensive, but less than factor of 2.

Ready to test in large applications like tracer transport.
Contact me if you’d like to collaborate.
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www.image.ucar.edu/DAReS/DART

All results here with DARTLAB tools 
freely available in DART.


