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Schematic of a Sequential Ensemble Filter

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.



Schematic of a Sequential Ensemble Filter

2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member.

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially.

Can think about single 
observation without (too 
much) loss of generality.



Schematic of a Sequential Ensemble Filter

3. Get observed value and observational error distribution
from observing system.



Schematic of a Sequential Ensemble Filter

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).

Ensemble Kalman filters assume 
Gaussianity for this problem. 

Can compute increments without 
Gaussian assumptions. (Old news).



Schematic of a Sequential Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Theory: impact of observation 
increments on each state 
variable can be handled 
independently!



Schematic of a Sequential Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Can solve this bivariate problem 
in other ways. Topic of this talk.



Schematic of a Sequential Ensemble Filter

6. When all ensemble members for each state variable are 
updated, there is a new analysis. Integrate to time of next 
observation …
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Standard ensemble filters just use bivariate sample 
linear regression to compute state increments.

AMS, 7 January 2019

Focus on the Regression Step

Dxi,n=bDyn,
n=1,…N.

N is ensemble size.
b is regression    

coefficient.
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Examine another way to increment state given 
observation increments; still bivariate.

AMS, 7 January 2019

Focus on the Regression Step
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Nonlinear Regression Example

Try to exploit nonlinear 
prior relation between a 
state variable and an 
observation.

Example: Observation 
y~log(x). 

Also relevant for variables 
that are log transformed 
for boundedness (like 
concentrations).
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Standard Ensemble Adjustment Filter (EAKF)

Try to exploit nonlinear 
prior relation between a 
state variable and an 
observation.

Example: Observation 
y~log(x). 

Also relevant for variables 
that are log transformed 
for boundedness (like 
concentrations).
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Standard Rank Histogram Filter (RHF)

Try to exploit nonlinear 
prior relation between a 
state variable and an 
observation.

Example: Observation 
y~log(x). 

Also relevant for variables 
that are log transformed 
for boundedness (like 
concentrations).
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Rank Regression

1. Convert bivariate ensemble to bivariate rank ensemble.

2. Do least squares on bivariate rank ensemble.

Standard regression Rank regression

Noisy
Relation.
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Rank Regression

1. Convert bivariate ensemble to bivariate rank ensemble.

2. Do least squares on bivariate rank ensemble.

Standard regression Rank regression

Monotonic 
relation.
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Rank Regression

1. Convert bivariate ensemble to bivariate rank ensemble.

2. Do least squares on bivariate rank ensemble.

3. Convert observation posteriors to rank.

4. Regress rank increments onto state ranks.
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Rank Regression

1. Convert bivariate ensemble to bivariate rank ensemble.

2. Do least squares on bivariate rank ensemble.

3. Convert observation posteriors to rank.

4. Regress rank increments onto state ranks.

5. Convert posterior state ranks to state values.
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Rank Regression Example

Rank regression with 
RHF for observation 
marginal.

Follows monotonic 
ensemble prior ‘exactly’.
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Each ‘treatment’ pairs an observation space method:
1. Deterministic Ensemble Adjustment Kalman Filter (EAKF),
2. Stochastic Ensemble Kalman Filter (EnKF),
3. Non-Gaussian Rank Histogram Filter (RHF)

With a regression method:
A. Standard linear regression,
B. Rank regression.

Compare Six ‘Treatments’
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Select the Gaspari Cohn localization half-width:
0.125 0.15, 0.175, 0.2, 0.25, 0.4, infinite.

and fixed multiplicative inflation:
1.0, 1.02, 1.04, 1.08, 1.16, 1.32, 1.64.

that gives minimum time mean posterior RMSE.

(7x7=49 possibilities checked). 

Find best localization/inflation pair for each of the six treatments.

Empirically Tuned Localization and Inflation
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40 state variables.

40 randomly located ‘observing stations’ around unit circle.
(!" is state interpolated to a station location).

Explored 4 different forward operators:
Identity: #" = !", 
Square root: #" = %&' !" !" ,
Square: #" = !"( ,
Cube: #" = !") .

Lorenz-96 Tests
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Select rank regression treatment with lowest RMSE:
This picks inflation, localization, and observation space filter 

(EAKF, EnKF, or RHF).

Select linear regression treatment with lowest RMSE.

Apply each to ten 5000-step assimilation cases.

Result is 10 pairs of RMSE for rank versus linear regression.

Paired T-test used to establish significance of RMSE differences.

Lorenz-96 Tests: Statistical Significance
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Identity Forward Operator Results

Observation error variance 1.0
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Identity Forward Operator Results

Observation error variance 1.0

Circle: 
EnKF best
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Identity Forward Operator Results

Observation error variance 1.0

Triangle: 
RHF best

Circle: 
EnKF best
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Identity Forward Operator Results

Observation error variance 1.0

Small Marker: 
P-value > 0.01,
Not significant



pg 27AMS, 7 January 2019

Identity Forward Operator Results

Observation error variance 1.0

Large Marker: 
P-value < 0.00001

Small Marker: 
P-value > 0.01
Not significant
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Identity Forward Operator Results

Observation error variance 1.0

Triangle: 
RHF best

Circle: 
EnKF best
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Identity Forward Operator Results

Observation error variance 2.0

Triangle: 
RHF best

Circle: 
EnKF best
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Identity Forward Operator Results

Observation error variance 4.0

Triangle: 
RHF best

Circle: 
EnKF best
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Identity Forward Operator Results

Observation error variance 16.0

Triangle: 
RHF best

Circle: 
EnKF best
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Summary: Identity Forward Operator Results

RHF better for larger RMSE, EnKF for smaller.
Linear regression always better than rank regression.

Triangle: 
RHF best

Circle: 
EnKF best
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Square Root Forward Operator Results

Observation error variance 0.25

Triangle: 
RHF best

Circle: 
EnKF best
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Square Root Forward Operator Results

Observation error variance 0.25

Red: Rank 
regression best

Blue: Linear
regression best
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Square Root Forward Operator Results

Observation error variance 0.5
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Square Root Forward Operator Results

Observation error variance 1.0
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Square Root Forward Operator Results

Observation error variance 2.0
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Summary: Square Root Forward Operator Results

RHF with rank regression better for larger RMSE.
EnKF with linear regression better for smaller RMSE.

Red Triangle: 
RHF with rank 
regression best

Blue Circle: 
EnKF with linear 
regression best
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Square Root Forward Operator: Ensemble Size

20 Members: EAKF with linear regression always best.

Blue ‘x’: 
EAKF with linear 
regression best
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Square Root Forward Operator: Ensemble Size

40 Members: RHF with rank regression for large RMSE.
EAKF/linear regression for intermediate RMSE.
EnKF/linear for smaller RMSE.
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Square Root Forward Operator: Ensemble Size

80 Members: RHF with rank regression for large RMSE.
EnKF/linear for smaller RMSE.
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Square Root Forward Operator: Ensemble Size

160 Members: RHF with rank regression for large RMSE.
EnKF/linear for smaller RMSE.
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Summary: Cube Forward Operator Results

RHF with rank regression better for larger RMSE.
EnKF with linear regression better for smaller RMSE.

Red Triangle: 
RHF with rank 
regression best

Blue Circle: 
EnKF with linear 
regression best
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Summary: Square Forward Operator Results

RHF/linear better for larger RMSE.
Mixed for smaller RMSE.
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Summary: Square Forward Operator Results

RHF/linear better for larger RMSE.
Mixed for smaller RMSE.
Observation operator is not invertible!
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Computational cost for the state variable update:

Base regression: O(m2n)
Rank regression: O(m2nlogn)

m: sum of state size plus number of observations,
n: ensemble size.

Average rank cost can be made O(m2n) with some work
(smart sorting and searching).

Good for GPUs (more computation per byte).

Computational Cost
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Conclusions

Non-Gaussian observation space methods can be superior to Gaussian.

Nonlinear regression can be superior in cases of strong nonlinearity.

Other nonlinear regressions (e.g. polynomial) can be effective.

Ensemble method details make significant differences in performance.

NWP applications should be carefully developed.
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www.image.ucar.edu/DAReS/DART

All results with DART/DARTLAB tools 
freely available in DART.
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Multi-valued, not smooth example.

Similar in form to a wind 
speed observation with 
state velocity component.
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Multi-valued, not smooth example.

Standard regression does 
not capture bimodality of 
state posterior.
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Multi-valued, not smooth example.

Rank regression nearly 
identical in this case.


