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CISL's Data Assimilation Research Section: 
Accelerating NCAR Science with Ensemble Data Assimilation
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1. Intro to Ensemble Data Assimilation
2. Intro to DART
3. Example Collaborative Projects (with team introductions)
4. Data Assimilation Science in DAReS
5. Exciting new projects



What is Data Assimilation?

…to produce an analysis
(best possible estimate).

+

Observations combined with a Model forecast …
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Uncertainty and Ensemble Data Assimilation

Uncertainty is a key aspect of Earth System Data Assimilation (DA).

All observations have random errors (my thermometer is not exact).

Usually not as many observations as one would like (it’s a big world).

Errors grow as forecasts get longer (models are ‘chaotic’).

Use an ensemble (a set) of forecasts. 

These can give an idea of the uncertainty.
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Ensemble DA in the Lorenz Model

In 1963, Ed Lorenz made a very simple model of convection.
It only has 3 variables.
Surprise! Very small differences at the start become HUGE for long forecasts.

Model also describes how a ball moves in space.
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Ensemble DA in the Lorenz Model

We’ll show an example with 20 ensemble members. 

One solution of model is defined to be the ‘truth’.

‘Observations’ are created by adding random error to truth.

Observations only every 6 hours.
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Simple Example: Lorenz 63
3-variable chaotic model
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Prior ensemble in green.

Observing all three state variables.

Obs. Error variance = 4.0.

Four 20-member ensembles.
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Simple Example: Lorenz 63
3-variable chaotic model
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Observation in red.

Prior ensemble in green.

Ensemble is passing through an
unpredictable region.
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Simple Example: Lorenz 63
3-variable chaotic model
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Observation in red.

Prior ensemble in green.

Part of the ensemble heads for one
lobe, the rest for the other..
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Simple Example: Lorenz 63
3-variable model

−20
0

20 −20
0

20
10
20
30
40

Observation in red.

Prior ensemble in green.

CISL Seminar: 6 Nov 2019 page 13



Ensemble Kalman Filter: The Details

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.
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Ensemble Kalman Filter: The Details

2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member.

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially.
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Ensemble Kalman Filter: The Details

3. Get observed value and observational error distribution
from observing system.
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Ensemble Kalman Filter: The Details

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).
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Ensemble Kalman Filter: The Details

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Theory: impact of observation 
increments on each state 
variable can be handled 
independently!
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Ensemble Kalman Filter: The Details

6. When all ensemble members for each state variable are 
updated, there is a new analysis. Integrate to time of next 
observation …
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The Data Assimilation Research Section (DAReS)

Mission: To accelerate progress in Earth System Science at NCAR, UCAR Universities, and in 
the broader science community by providing state-of-the-art ensemble DA capabilities.

Method: DAReS develops and maintains the Data Assimilation Research Testbed, a 
community facility for ensemble data assimilation.
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Ø A state-of-the-art Data Assimilation System for Geoscience
Ø Flexible, portable, well-tested, extensible, free!

Ø Works with many models.

Ø Works with any observations: Real, synthetic, novel.

Ø A Data Assimilation Research System
Ø Theory based, widely applicable general techniques.

Ø Localization, Sampling Error Correction, Adaptive Inflation, …

Ø Professional software engineering 
Ø Carefully constructed and verified.

Ø Excellent performance.

Ø Comprehensive documentation, examples, tutorials.

Ø People: The DAReS Team
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DART is used at: 

More than 48 UCAR member universities,
More than 100 other sites,

(More than 1500 registered users).

CISL Seminar: 6 Nov 2019 page 22



Ø Works with nearly all NCAR community models (dozens of 
other models, too).

Ø New models can be added in weeks.
Ø Adding new observations is even easier.
Ø Modular: models, observations and assimilation tools 

easily combined.
Ø Enables DA use by prediction scientists.

Doesn’t require assimilation expertise.
Ø Fast & efficient software: laptops to supers.
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• Ensemble forecasts,

• Ensemble reanalysis,

• Explore predictability,

• Sensitivity analysis,

• Model improvement,

• Observing system evaluation,

• Observing system design,

• DA algorithm improvement.
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Two Critical Science/Engineering Design Choices

1. We keep our fingers out of your model.
No changes required to forecast model. 

2. Single observation changing single model variable.
Without loss of generality,
Simplifies algorithms, parallelism.
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DAReS Lead
Glen Romine (50% MMM)

Glen is at the Mesa Lab on 
Tuesday each week. 

With DAReS since 2009.

Forecast Model
WRF, Weather Research and 
Forecasting Model

Science Collaborator
MMM, Oklahoma

DA Capability
Ensemble Prediction
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Severe weather forecast for two days compared to NWS warnings

• WRF, 10 member ensemble, GFS for boundary conditions
• Continuous operation from April 2015 to December 2017 
• 48 hour forecasts at 3km resolution
• First continuously cycling ensemble system for CONUS
• CISL Dedicated Queues and Computing Support were Vital
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DAReS Lead
Kevin Raeder

With DAReS since 2003.

Previously with CGD.

Forecast Model
CAM6 (Community Atmosphere Model)
CESM (Community Earth System Model)

Science Collaborator
CGD, Washington, 
Arizona, Utah

DA Capability
Ensemble Reanalysis
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An Ensemble Reanalysis with CAM in CESM: Motivation

1. Evaluate weather prediction capabilities of CAM
Confront climate model with observations
Identify systematic short-term forecast errors
Compare to earlier CAM reanalysis

2. Provide forcing for CESM component model simulations
POP ocean model
CLM land surface
CICE sea ice model
Offline chemistry transport models
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An Ensemble Reanalysis with CAM in CESM: Logistics

Target period from 1999-present.

Two overlapping streams starting in 1999, 2010.

Lots of computing (50 million Cheyenne core hours).

Thanks to NSC allocation and help from many CISL staff.
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An Ensemble Reanalysis with CAM in CESM: Observations
Observations 

GPS ACARS and Aircraft 

Radiosondes Sat Winds 

1 December 2006 

Examples for single assimilation window, also assimilating AIRS satellite temperatures.
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An Ensemble Reanalysis with CAM in CESM: Results

Color contours from DART (20 of 80 ensemble members). Show Uncertainty.

Black from operational NCEP analysis.
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An Ensemble Reanalysis with CAM in CESM: Results

Color contours from DART (20 of 80 ensemble members). Show Uncertainty.

Black from operational NCEP analysis.

CISL Seminar: 6 Nov 2019 page 34



DAReS Leads
Moha El Gharamti

Ben Johnson

Forecast Model
WRF-Hydro® 
Nearly the same as the 
National Water Model

Science Collaborator
RAL (James McCreight), 
Texas Arlington

DA Capability
Model Improvement

With DAReS since 
2016.

With DAReS since 
September.
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WRF-Hydro/DART: The Model

2-way coupling

WRF-Hydro: https://www.ral.ucar.edu/projects/wrf_hydro
Weather Forcing Engine

NoahMP
Land Surface Model Terrain Routing Module

Channel & Reservoir
Routing Module

NHDPlus Catchment
Aggregation

Forecast
Products
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WRF-Hydro/DART: DA System

Channel-Bucket-Only Ensemble Data Assimilation
Overland 
Flux (cms)

USGS
Streamflow

Obs

NCAR
DART

* EAKF (Anderson, 2001)
* Enhanced Inflation (El Gharamti, 2018)

Parametric 
Noise 
Model

Streamflow (cms)

Bucket depth (m)

Soil Column 
Flux (cms)

Parametric 
Noise 
Model

Weather Engine NoahMP LSM

github.com/NCAR/wrf_hydro_py.gitPython 
environment

ensemblesensembles
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WRF-Hydro/DART: Florence 2018

30+” of rain

Hurricane Florence made landfall near 
Wrightsville Beach, North Carolina at 
7:15 a.m. ET September 14. The 
GOES East satellite captured this 
geocolor image at 7:45 a.m. ET

Winds up to 150 mph (240 km/hr)
Damage: $24.23 billion
NOAA/NWS/NCEP/WPC
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WRF-Hydro/DART: The Florence Region

About 42 miles

Bald Head Island, NC to Cape Lookout, NC 28531 Walk 147 miles, 45 h
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WRF-Hydro/DART: No DA Control

-80.5 -80 -79.5 -79 -78.5 -78 -77.5 -77 -76.5

Longitude

3
3

.6
6

3
4

.4
5

3
5

.2
4

3
6

.0
3

3
6

.8
2

L
a
tit

u
d
e

Reach Stream Flow Ensemble Mean
Time-Avg (07 Sep - 07 Oct): Control

0      
112.422

311.394

493.865

683.534

910.669

1085.56

2356.62
cms

cms is m3/s

Monthly mean of 
the model. The 
streamflow is 
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precipitation. 
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Now, what 
happens when 
streamflow gauge 
data is 
incorporated 
through DA? 

More than 100 
gauges, reporting 
every 15 mins.
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WRF-Hydro/DART: DA Impact

Correction 
along major 
reaches. DA is 
adding water to 
the stream 
channels.
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WRF-Hydro/DART: Bucket Problems

Channel-Bucket-Only Ensemble Data Assimilation
Overland 
Flux (cms)

USGS
Streamflow

Obs

NCAR
DART

* EAKF (Anderson, 2001)
* Enhanced Inflation (El Gharamti, 2018)

Parametric 
Noise 
Model

Streamflow (cms)

Bucket depth (m)

Soil Column 
Flux (cms)

Parametric 
Noise 
Model

Weather Engine NoahMP LSM

github.com/NCAR/wrf_hydro_py.gitPython 
environment

ensemblesensembles
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DAReS Leads
Tim Hoar

Xueli Huo

Forecast Model
CLM (Community Land Model)

Science Collaborator
UCAR (Andy Fox)
CGD, Arizona, Utah

DA Capability
Predictability

With DAReS since 
2003.

Long-term visitor 
from Arizona.
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Slides from Dave Lawrence, CGD. 
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• 9.7 km east of the Continental Divide
• C-1 is located in a Subalpine Forest
• (40º 02' 09'' N; 105º 32' 09'' W; 3021 m)
• One column of Community Land Model (CLM)

• Spun up for 1500 years with site-specific information.
• 64 ensemble members
• Forcing from the DART/CAM reanalysis,
• Assimilating tower fluxes of latent heat (LE), sensible heat (H), and net 

ecosystem production (NEP).
• Impacts CLM variables: LEAFC, LIVEROOTC, LIVESTEMC, DEADSTEMC, 

LITR1C, LITR2C, SOIL1C, SOIL2C, SOILLIQ … all of these are unobserved.

In collaboration with Andy Fox (U. Arizona)
An experiment at Niwot Ridge
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June 2004

Free Run
Assim

Unobserved variables are updated. 
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CISL Seminar: 6 Nov 2019

Global case. Remote sensing DA changes to Leaf Area Index estimates.
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DAReS Lead
Jeff Anderson

With DAReS since before it 
existed.

Forecast Model
WACCM-X
Whole Atmosphere Community 
Climate Model, Extended Top

Science Collaborator
HAO (Nick Pedatella)
Colorado

DA Capability
Observing System 
Evaluation
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Deep Atmospheric Component Coupled DA 

WACCMX:
• 2 degrees, 126 levels, top at 4.1x10-10 hPa (more than 500 km)
• High-top extension of CAM
• Includes ionospheric processes
• Persistence forecasts of solar and geomagnetic forcing

Observations:
• All in situ plus GPS refractivity in troposphere/lower stratosphere
• Temperature from AURA Microwave Limb Sounder (MLS)
• Temperature from TIMED/SABER
• Temperatures only up to 100km

DART:
• 40 members
• Adaptive inflation, GC localization
• 6-hour window
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Deep Atmospheric Component Coupled DA 
a.

b.

c.

Impact of Stratospheric Sudden 
Warming on ionosphere

Forecast (top panel), reanalysis 
(middle), and independent obs
of Total Electron Content.

Agreement of forecast with 
observations indicates 
significant prediction skill.
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DAReS (Honorary) Lead
Arthur Mizzi
(Had ACOM/CISL joint)

Now with State of Colorado.

Often at Mesa Lab on Friday.

Forecast Model
WRF/Chem (WRF with Chemistry)

Science Collaborator
State of Colorado
ACOM
UC Berkeley

DA Capability
Observing System Design
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Air Quality Prediction Example

Xueling Liu, Ron Cohen, Inez Fung UC Berkeley.

Build NO2 prediction system for Denver Metro.
Model is WRF/CHEM.
Observations are in situ plus satellite NO2 (and NWP obs).

An observing system simulation experiment. 
(No real observations yet).

Source estimation at km scale is eventual goal.
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Air Quality Prediction Example

12 km outer domain and 3 km inner domain.
Weather observations assimilated on inner domain. 
TEMPO NO2 observations assimilated in red rectangle. 
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Air Quality Prediction Example

System also estimates emissions.
9:00 am (top) 4:00 pm (bottom) on July 3rd. 
Comparison of analysis to specified truth.
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DAReS Leads
Jeff Steward

Nancy Collins

Forecast Model
WP-GITM (Ocean Wave 
Propagation-Global Ionosphere 
Thermosphere Model)

Science Collaborator
JPL (Panagiotis)

DA Capability
Sensitivity

With DAReS since 
September.

With DAReS since 
2006.
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Tsunamis make very small changes to sea surface height in open ocean.
But, waves amplify in the atmosphere, 100m plus amplitude in ionosphere.
Changes Total Electron Content (TEC) of Ionosphere.
GPS signals are slowed by electrons. 
Delays at ground stations can detect tsunami impacts in ionosphere (no way)!

CISL Seminar: 6 Nov 2019 page 56



Tohuku example: Gravity waves in ionosphere over tsunami waves in ocean.

Use DART to find tsunami by assimilating GPS observations of TEC.
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DAReS Lead
Dan Amrhein (80% CGD)

Dan sits in A-tower but joins 
DAReS software standups. 

With DAReS since September.

Forecast Model
POP/CAM/CLM/CICE in CESM

Science Collaborator
CGD (Alicia Karspeck), 
Washington, Oklahoma

DA Capability
Assimilation methodology.
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Couple
r

CAM

Ocn Obs

POP/DART

POP

CLM

CICE

Multiple components assimilating 
with different DART(s) in fully-
coupled CESM.

CAM/DARTAtm Obs

Multiple Component POP/CAM Coupled DA 

Results from 
Alicia Karspeck
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Multiple Component POP/CAM Coupled DA 

Weakly coupled reanalysis from 1970-1981

Model:
• POP, 1 degree, standard CESM configuration
• CAM-FV, 1 degree, standard CESM configuration

Observations:
• In-situ atmosphere observations from NCEP reanalysis
• Ocean temperature and salinity, World Ocean Database

DART:
• 30 members
• Limited adaptive inflation in ocean
• Fully adaptive inflation in atmosphere
• GC localization
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Multiple Component POP/CAM Coupled DA 

   0
o
    60

o
E  120

o
E  180

o
W  120

o
W   60

o
W    0

o
  

  60
o
S 

  30
o
S 

   0
o
  

  30
o
N 

  60
o
N 

Network of ocean and atmosphere observations assimilated
Jan 1975

Observations are sparse for this period.
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Multiple Component POP/CAM Coupled DA 

Comparisons to HADISST and 
HADSLP.

Correlation high where 
observations existed.

DART did not assimilate SST 
products or observations.

Produces competitive 
reanalysis.
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DAReS staff develop improved algorithms that can be added to DART.

DAReS world leader in complex algorithms for:
Adaptive inflation,
Localization,
Sampling error reduction.

All of these are available and nearly universally used in DART.
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Most DA algorithms are Gaussian and linear.
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Fit a Gaussian to ensemble members.

Do a least squares fit to ensemble.
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All earth system applications are Non-Gaussian and Nonlinear

Especially true for bounded quantities:
Streamflow
Relative humidity
Emission of carbon dioxide

Two Non-Gaussian, Nonlinear algorithms being tested in DART

1. Anamorphosis, Moha

2. Marginal Correction Rank Histogram Filter, Jeff A.
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Gaussian Anamorphosis
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DA update using Gaussian Anamorphosis

Used Obs

Rejected Obs: -0.00%

Prior Members

Posterior Members

Open Loop, RMSE: 11.15

Prior Mean, RMSE: 5.38

Posterior Mean, RMSE: 1.97

Average Kurtosis
      Prior: 0.41
  Posterior: 0.40

Average Kurtosis
      Prior: 0.02
  Posterior: 0.08

Observation rejection is 
improved with GA. 

Better fit to the observations 
on Sep. 17th. 

Higher order moments are 
almost completely eliminated 
using GA.  

Control,

Control,
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Marginal Correction Rank Histogram

Lorenz-63 example: x is observed, z is not observed.
Red indicates observation and error s.d.

Green prior.
Blue Posterior.
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Brian Dobbins, John Dennis, Mick Coady, D. J. Gagne, many others.

Observations. 

Really, really big data.

Large user of super-computing resources, need optimization.

Machine learning. 

SIParCS, we love working with these students.

Why are we in CISL? Because this is the best place for us.
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• Fully-coupled atmosphere, ocean (land, sea-ice) DA with CGD.

• DA for satellite radiance observations with CMCC/Italy.

• New software for handling observations:
Better IO,
Handle correlated observation errors,
Better parallelism.

• DART for SIMA, System for Integrated Modeling of the Atmosphere.

• DART for MUSICA, new chemistry modeling.

• Prediction with MPAS and regional MPAS (Soyoung Ha, MMM).

Priority: Stay nimble so we can work with more novel science applications.
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