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What is Data Assimilation?

Observations combined with a Model forecast ...

e
e

...to produce an analysis
(best possible estimate).
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Uncertainty and Ensemble Data Assimilation

Uncertainty is a key aspect of Earth System Data Assimilation (DA).
All observations have random errors (my thermometer is not exact).
Usually not as many observations as one would like (it’s a big world).

Errors grow as forecasts get longer (models are ‘chaotic’).

Use an ensemble (a set) of forecasts.

These can give an idea of the uncertainty.
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Ensemble DA in the Lorenz Model

In 1963, Ed Lorenz made a very simple model of convection.
It only has 3 variables.
Surprise! Very small differences at the start become HUGE for long forecasts.

Model also describes how a ball moves in space.
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Ensemble DA in the Lorenz Model

We’'ll show an example with 20 ensemble members.
One solution of model is defined to be the ‘truth’.
‘Observations’ are created by adding random error to truth.

Observations only every 6 hours.
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Simple Example: Lorenz 63

3-variable chaotic model

Observation in red.
Prior ensemble in green.

Observing all three state variables.

Obs. Error variance = 4.0.

Four 20-member ensembles.
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Simple Example: Lorenz 63

-variable chaotic model

Observation in red.

Prior ensemble in green.
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Simple Example: Lorenz 63

-variable chaotic model

Observation in red.

Prior ensemble in green.
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Simple Example: Lorenz 63

-variable chaotic model
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Simple Example: Lorenz 63

-variable chaotic model

Observation in red.
Prior ensemble in green.

Ensemble is passing through an
unpredictable region.
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Simple Example: Lorenz 63

3-variable chaotic model

R O Observation in red.
Prior ensemble in green.

Part of the ensemble heads for one
lobe, the rest for the other..
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imple Example: Lorenz 63

-variable model

Observation in red.

Prior ensemble in green.
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Ensemble Kalman Filter: The Details

1. Use model to advance ensemble (3 members here) to time at
which next observation becomes available.

Ensemble state Ensemble state
estimate after using at time of next
previous observation observation
(analysis) (prior)

‘>

t
k/ — tk+1

%
*
* .
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Ensemble Kalman Filter: The Details

2. Get prior ensemble sample of observation, y = h(x), by
applying forward operator h to each ensemble member.

Theory: observations
h h from instruments with

uncorrelated errors can

be done sequentially.

h
tk

*
*
*

— R 4
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Ensemble Kalman Filter: The Details

3. Get observed value and observational error distribution
from observing system.

h h\ h

tk

*
*
*

— R 4
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Ensemble Kalman Filter: The Details

4. Find the increments for the prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).

h h\ h

tk

*
*
*

— P 4

CISL Seminar: 6 Nov 2019 page 17



Ensemble Kalman Filter: The Details

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.

h
tk

*
*
*

Theory: impact of observation
increments on each state

o . variable can be handled
independently!
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Ensemble Kalman Filter: The Details

6. When all ensemble members for each state variable are
updated, there is a new analysis. Integrate to time of next
observation ...

h h\ h

tk+2
tk ;\ B

*
*
*

— / >
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The Data Assimilation Research Section (DAReS)

Mission: To accelerate progress in Earth System Science at NCAR, UCAR Universities, and in
the broader science community by providing state-of-the-art ensemble DA capabilities.

Method: DAReS develops and maintains the Data Assimilation Research Testbed, a
community facility for ensemble data assimilation.
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Data Assimilation Research Testbed (DART)

» A state-of-the-art Data Assimilation System for Geoscience
> Flexible, portable, well-tested, extensible, free!
» Works with many models.
» Works with any observations: Real, synthetic, novel.
» A Data Assimilation Research System
» Theory based, widely applicable general techniques.
» Localization, Sampling Error Correction, Adaptive Inflation, ...
» Professional software engineering
» Carefully constructed and verified.
» Excellent performance.

» Comprehensive documentation, examples, tutorials.

» People: The DAReS Team
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DART is used at;:

More than 48 UCAR member universities,
More than 100 other sites,
.. (More than 1500 registered users).
CRE i) contral wosthor suroau

Il WASHINGTON

w \z74

THE
UNIVERSITY
OFUTAH

Jet Propulsion Laboratory
California Institute of Technology
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DART Accelerates Forecast System Development

» Works with nearly all NCAR community models (dozens of
other models, too).

A\

New models can be added in weeks.

A\

Adding new observations is even easier.

A\

Modular: models, observations and assimilation tools
easily combined.

» Enables DA use by prediction scientists.
Doesn’t require assimilation expertise.

» Fast & efficient software: laptops to supers.
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Some DART Capabilities

e Ensemble forecasts,

* Ensemble reanalysis,
 Explore predictability,

e Sensitivity analysis,

e  Model improvement,

*  Observing system evaluation,
*  Observing system design,

DA algorithm improvement.
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DART is still Unique after nearly 2 Decades

Two Critical Science/Engineering Design Choices

1. We keep our fingers out of your model.

No changes required to forecast model.
2. Single observation changing single model variable.

Without loss of generality,

Simplifies algorithms, parallelism.
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Cool Science Example 1

DAReS Lead Forecast Model
Glen Romine (50% MMM) WRF, Weather Research and

Forecasting Model

Science Collaborator
MMM, Oklahoma

Glen is at the Mesa Lab on
Tuesday each week.

DA Capability
With DAReS since 2009. Ensemble Prediction
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NCAR Real-time ensemble prediction system
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NCAR Ensemble Forecasts Surface / Precip Upper-Air ‘ ‘ Severe ‘ Winter ‘ ‘ Hourly-Max ‘ ‘ Domains
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ensemble.ucar.edu

Keyboard commands: toggle county overlay (regions only) [0] --- previous image [<] --- next image [>] --- hide header [h]
Forecasts sponsored by the National Science Foundation, National Center for Atmospheric Research/Mesoscale and Microscale Meteorology Laboratory, and Computational Information Systems Laboratory
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Severe weather forecast for two days compared to NWS warnings

NCAR Real-time ensemble prediction system
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WRF, 10 member ensemble, GFS for boundary conditions

* Continuous operation from April 2015 to December 2017

* 48 hour forecasts at 3km resolution
* First continuously cycling ensemble system for CONUS

e CISL Dedicated Queues and Computing Support were Vital
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Cool Science Example 2

DAReS Lead
Kevin Raeder

Previously with CGD.

Forecast Model

CAMG6 (Community Atmosphere Model)
CESM (Community Earth System Model)

Science Collaborator

CGD, Washington,
Arizona, Utah

With DAReS since 2003.

DA Capability
Ensemble Reanalysis
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An Ensemble Reanalysis with CAM in CESM: Motivation

1. Evaluate weather prediction capabilities of CAM
Confront climate model with observations
Identify systematic short-term forecast errors
Compare to earlier CAM reanalysis

2. Provide forcing for CESM component model simulations
POP ocean model
CLM land surface
CICE sea ice model
Offline chemistry transport models
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An Ensemble Reanalysis with CAM in CESM: Logistics

Target period from 1999-present.
Two overlapping streams starting in 1999, 2010.
Lots of computing (50 million Cheyenne core hours).

Thanks to NSC allocation and help from many CISL staff.
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An Ensemble Reanalysis with CAM in CESM: Observations

Examples for single assimilation window, also assimilating AIRS satellite temperatures.

ACARS and Aircraft

T e SRR o
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An Ensemble Reanalysis with CAM in CESM: Results

DART CAM GPH at 500hPa
20 of 80 members for 00Z 13 Sep 2010
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Color contours from DART (20 of 80 ensemble members). Show Uncertainty.

Black from operational NCEP analysis.
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An Ensemble Reanalysis with CAM in CESM: Results

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180
CONTOUR FROM 5040 TO 5880 BY 120

Color contours from DART (20 of 80 ensemble members). Show Uncertainty.

Black from operational NCEP analysis.
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Cool Science Example 3

DAReS Leads
Moha El Gharamti

With DAReS since
2016.

Ben Johnson

With DAReS since
September.

Forecast Model
WRF-Hydro®

Nearly the same as the
National Water Model

Science Collaborator
RAL (James McCreight),
Texas Arlington

DA Capability

Model Improvement
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WRF-Hydro/DART: The Model

Weather Forcing Engine

¢
30

WRF-Hydro: https.//www.ral.ucar.edu/projects/wrf _hydro
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WRF-Hydro/DART: DA System

. Terrain Routing NHDPIlus Catchme!
Module Aggregation . ]/ :
q
[

?

p

—_— o
/

Soil Column Overland

Channel-Bucket-Only Ensemble Data Assimilation Flux (cms) Flux (cms)

.~

§ ensembles ;

Streamflow (cms)

wy  ensembles L

Channel & Reservoir l P tri
Routing Modules - - arametric
B §. i i Noise
e 8 -~ Model

USGS
Streamflow

* EAKF (Anderson, 2001)
* Enhanced Inflation (El Gharamti, 2018)

Groundwater
Bucket Model .
‘ Parametric
Bucket depth (m) ‘%’ 7] . — I\r\/llg:jsgl

Python
environment

github.com/NCAR/wrf_hydro_py.git
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Winds up to 150 mph (240 km/hr)
Damage: $24.23 billion
NOAA/NWS/NCEP/WPC
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WRF-Hydro/DART: Florence 2018

-y

» ™ Hurricane Florence made landfall near
Wrightsville Beach, North Carolina at
7:15 a.m. ET September 14. The
=« GOES East satellite captured this

' geocolor image at 7:45 a.m. ET

an ‘ P an
Hurricane Florence
168-hour Day 1-7 Rainfall Forecast (inches)
Created 4:40 AM EDT Thu Sep 13 2018
Valid 8:00 AM EDT Thu Sep 13 2018
through 8:00 AM EDT Thu Sep 20 2018
NOAA/NWS/NCEP/WPC

”

- 30+” of rain -

&

| 1
Local point maximum rainfall may be higher than shown.
See the NHC public advisories for the latest tropical cyclone information.
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WRF-Hydro/DART: The Florence Region
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WRF-Hydro/DART: No DA Control

Reach Stream Flow Ensemble Mean
Time-Avg (07 Sep - 07 Oct): Control
Y o

36.82

Monthly mean of
the model. The
streamflow is
driven by the
precipitation.

36.03

More than 100
gauges, reporting
every 15 mins.

Latitude
35.24

Now, what
happens when
streamflow gauge
data is
incorporated
through DA?

2356.62
1085.56
910.669
683.534
493.865
311.394

cms is m3/s 112.422
0

34.45

| | | | |

-78.5 -78 -77.5 -77 -76.5
Longitude

33.66
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WRF-Hydro/DART: DA Impact

Reach Stream Flow Ensemble Mean

Assimilation o Time-Avg (07 Sep - 07 Oct): Posterior - Control
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WRF-Hydro/DART: Bucket Problems

4 . Terrain Routing NHDPlus Ca menh

Weather Engine
O A T Module

NoahMP LSM

0il Column Overland
Flux (cms) Flux (cms)

Groundwater
Bucket Model

Bucket depth (m)

§ ensembles ;

Streamflow (cms)

USGS
Streamflo'w
o Obs ™ :,‘

* EAKF (Anderson, 2001)
* Enhanced Inflation (El Gharamti, 2018)

Python

environment
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Cool Science Example 4

DAReS Leads
Tim Hoar

Xueli Huo

With DAReS since
2003.

Long-term visitor
from Arizona.

Forecast Model

CLM (Community Land Model)

Science Collaborator

UCAR (Andy Fox)
CGD, Arizona, Utah

DA Capability

Predictability
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Estimating Ecosystem Variables in CLM

. *sti‘ =....é"?

«3"

9.7 km east of the Continental Divide

C-1is located in a Subalpine Forest

(402 02' 09" N; 1052 32' 09" W, 3021 m)

One column of Community Land Model (CLM)
e Spun up for 1500 years with site-specific information.

64 ensemble members

Forcing from the DART/CAM reanalysis,

Assimilating tower fluxes of latent heat (LE), sensible heat (H), and net

ecosystem production (NEP).

Impacts CLM variables: LEAFC, LIVEROOTC, LIVESTEMC, DEADSTEMC,

LITR1C, LITR2C, SOIL1C, SOIL2C, SOILLIQ ... all of these are unobserved.
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Estimating Ecosystem Variables in CLM

Unobserved variables are updated.

360 8
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Estimating Ecosystem Variables in CLM

Global case. Remote sensing DA changes to Leaf Area Index estimates.

Forecast Jul 2001 Forecast Aug 2001

0 100 200 300 ) 0 100 200 300
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Cool Science Example 5

DAReS Lead
Jeff Anderson

With DAReS since before it
existed.

Forecast Model

WACCM-X
Whole Atmosphere Community
Climate Model, Extended Top

Science Collaborator

HAO (Nick Pedatella)
Colorado

DA Capability

Observing System
Evaluation
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Deep Atmospheric Component Coupled DA

WACCMX:

 2degrees, 126 levels, top at 4.1x1019 hPa (more than 500 km)
* High-top extension of CAM

* Includes ionospheric processes

e Persistence forecasts of solar and geomagnetic forcing

Observations:

* Allin situ plus GPS refractivity in troposphere/lower stratosphere
 Temperature from AURA Microwave Limb Sounder (MLS)
* Temperature from TIMED/SABER

 Temperatures only up to 100km

DART:

e 40 members
e Adaptive inflation, GC localization
e 6-hour window
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Deep Atmospheric Component Coupled DA

a. WACCMX+DART 2009JAN15 Forecast TEC, 75W, 1800 LT
. 20
Impact of Stratospheric Sudden 40t 1
. . 16
Warming on ionosphere o 20f 1
E 0 | 12
. g 8
Forecast (top panel), reanalysis —20¢ 1 .
(middle), and independent obs —40f | | 1 A,
of Total Electron Content. 10 >0
b. WACCMX+DART TEC, 75W, 1800 LT

Agreement of forecast with

observations indicates
significant prediction skill.

Latitude

10 20 30 40 50
TEC Obs., 75W, 1800 LT

Latitude

10 20 30 40 50
Day of Year, 2009
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Cool Science Example 6

DAReS (Honorary) Lead
Arthur Mizzi
(Had ACOM/CISL joint)

Now with State of Colorado.

Forecast Model

WRF/Chem (WRF with Chemistry)

Science Collaborator
State of Colorado
ACOM

UC Berkeley

Often at Mesa Lab on Friday.

DA Capability
Observing System Design
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Air Quality Prediction Example

Xueling Liu, Ron Cohen, Inez Fung UC Berkeley.
Build NO, prediction system for Denver Metro.
Model is WRF/CHEM.

Observations are in situ plus satellite NO, (and NWP obs).

An observing system simulation experiment.
(No real observations yet).

Source estimation at km scale is eventual goal.
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Air Quality Prediction Example

3

%80
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N
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Latitude
w
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32

™

420 11 110 105 -100
Longitude

12 km outer domain and 3 km inner domain.

Weather observations assimilated on inner domain.

TEMPO NO, observations assimilated in red rectangle.

130 125
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Air Quality Prediction Example

Truth Posterior

40.5

40

39.5
3971055 -105 -1045 3971055 -105
405 405
S 40 40
o
s
b
< 395 39.5

39

39 -105.5 -105 -104.5 -105.5 -105

System also estimates emissions.
9:00 am (top) 4:00 pm (bottom) on July 3,
Comparison of analysis to specified truth.
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Cool Science Example 7

DAReS Leads
Jeff Steward

With DAReS since
September.

With DAReS since
2006.

Forecast Model

WP-GITM (Ocean Wave
Propagation-Global lonosphere
Thermosphere Model)

Science Collaborator
JPL (Panagiotis)

DA Capability
Sensitivity
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Observing Tsunamis via the lonopshere

Tsunamis make very small changes to sea surface height in open ocean.
But, waves amplify in the atmosphere, 100m plus amplitude in ionosphere.
Changes Total Electron Content (TEC) of lonosphere.

GPS signals are slowed by electrons.

Delays at ground stations can detect tsunami impacts in ionosphere (no way)!

o AL
, altitude %\y
i

~350 km: maximum of ionization b s
TEC = [N, dI 7
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Observing Tsunamis via the lonopshere

Tohuku example: Gravity waves in ionosphere over tsunami waves in ocean.

Use DART to find tsunami by assimilating GPS observations of TEC.
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Cool Science Example 8

DAReS Lead
Dan Amrhein (80% CGD)

Dan sits in A-tower but joins
DAReS software standups.

With DAReS since September.

Forecast Model

POP/CAM/CLM/CICE in CESM

Science Collaborator

CGD (Alicia Karspeck),
Washington, Oklahoma

DA Capability
Assimilation methodology.
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Multiple Component POP/CAM Coupled DA
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Multiple components assimilating
Results from with different DART(s) in fully-
Alicia Karspeck COUp'Ed CESM.

CISL Seminar: 6 Nov 2019 page 59



Multiple Component POP/CAM Coupled DA

Weakly coupled reanalysis from 1970-1981

Model:

 POP, 1 degree, standard CESM configuration

e CAM-FV, 1 degree, standard CESM configuration
Observations:

* In-situ atmosphere observations from NCEP reanalysis
* Ocean temperature and salinity, World Ocean Database
DART:

* 30 members

* Limited adaptive inflation in ocean

* Fully adaptive inflation in atmosphere
 GClocalization
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Multiple Component POP/CAM Coupled DA

Network of ocean and atmosphere observations assimilated
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Observations are sparse for this period.
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Multiple Component POP/CAM Coupled DA
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DAReS DA Science Research

DAReS staff develop improved algorithms that can be added to DART.
DAReS world leader in complex algorithms for:

Adaptive inflation,

Localization,

Sampling error reduction.

All of these are available and nearly universally used in DART.
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DAReS DA Science Research

Most DA algorithms are Gaussian and linear.
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Fit a Gaussian to ensemble members.
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DAReS DA Science Research

All earth system applications are Non-Gaussian and Nonlinear
Especially true for bounded quantities:

Streamflow

Relative humidity

Emission of carbon dioxide
Two Non-Gaussian, Nonlinear algorithms being tested in DART

1. Anamorphosis, Moha

2. Marginal Correction Rank Histogram Filter, Jeff A.
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Gaussian Anamorphosis

Standard DA update
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Marginal Correction Rank Histogram

Green prior.
Blue Posterior.
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Lorenz-63 example: x is observed, z is not observed.
Red indicates observation and error s.d.
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Interactions with CISL Colleagues

Brian Dobbins, John Dennis, Mick Coady, D. J. Gagne, many others.
Observations.

Really, really big data.

Large user of super-computing resources, need optimization.
Machine learning.

SIParCS, we love working with these students.

Why are we in CISL? Because this is the best place for us.
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Some EXxciting Next Steps

* Fully-coupled atmosphere, ocean (land, sea-ice) DA with CGD.
* DA for satellite radiance observations with CMCC/Italy.
* New software for handling observations:
Better |0,
Handle correlated observation errors,
Better parallelism.
e DART for SIMA, System for Integrated Modeling of the Atmosphere.
* DART for MUSICA, new chemistry modeling.

e Prediction with MPAS and regional MPAS (Soyoung Ha, MMM).

Priority: Stay nimble so we can work with more novel science applications.
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