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The EnKF

State estimation tool
Given an observation y of state x , use Bayes:

p (xk |yk ,Yk−1) ≈ p (xk |Yk−1) · p (yk |xk ,Yk−1) (1)

Yk : {y1, y2, . . . , yk−1, yk }, k is time index

Successive Forecast and Update (Analysis) stages:
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N is the ensemble size
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The EnKF cont.

Some Drawbacks
1. Sampling Errors:

Ideal scenario: N = ∞; σ2
f is out-of-reach!

σ̂2
f depends on the ensemble size

lim
N→∞ σ̂2

f (N) = σ2
f

When N is small, σ̂2
f may underestimate σ2

f

2. Model Errors:
Biased model produces ensemble predictions that are far from the
observations. May lead to ensemble collapse

The goal is to maintain enough spread in the ensemble
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Inflation

One way to increase of the variance of the ensemble is to inflate:

x i ←
√
λ
(

x i − x
)
+ x (2)

while preserving the ensemble mean.

Which variance to inflate: Prior (after the forecast) or posterior
(after the update)?
What to choose for λ? 1.02 (2%), 1.04, 1.2, 10, ... ?
Why this is useful?

Higher spread: Larger uncertainty (less confidence in the estimates)!
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Adaptive Prior Inflation I

Idea is to use the data to estimate the inflation parameter.

For a single variable case, denote the following:

Forecast (Background) error: εf ∼ N
(

0,σ2
f

)
, (3)

Observation error: εo ∼ N
(

0,σ2
o

)
, (4)

Analysis error: εa ∼ N
(

0,σ2
a

)
;σ2

a
Kalman
= σ2

oσ
2
f /(σ

2
o + σ2

f ). (5)

The forecast innovation (discrepancy):

df = y − x f = y − xt + xt − x f = εo − εf , (6)

where xt is the true value of the variable.

Bayesian Approach [Anderson 2007, Anderson 2009, El Gharamti 2018]

p (λ|df ) ∝ p (λ) · p (df |λ) (7)
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Adaptive Prior Inflation II

Prior: p (λ) prescribed .. a Gaussian, an inverse-Gamma

Likelihood: p (df |λ) ∼ N (E (df ) , var (df ))

E (df ) = E (εo − εf ) = 0, (8)

var (df ) = θ
2 = E

[
(df − E (df ))

2
]

(9)

= E
[
ε2

o − εoεf − εf εo + ε2
f

]
(10)

= σ2
o + σ2

f (11)

⇒ θ2(λ) = σ2
o + λσ̂2

f (12)

Assumptions:
1. Observation and forecast errors are uncorrelated; E [εoεf ] = 0
2. Errors are associated only with the forecast variance. The
observation error variance σ2

o is known and is right!
3. Inflating the ensemble variance by λ will match the theoretical
(hidden) forecast variance
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Adaptive Prior Inflation III

Posterior:

p (λ|df ) = IG(α,β) ·N
(

0, θ2 (λ)
)
, (13)

=
βα

Γ(α)
λ−α−1 exp

(
−
β

λ

)
· 1√

2πθ
exp

(
−

d2
f

2θ2

)
,

=
βαλ−α−1
√

2πθΓ(α)
exp

(
−
βd2

f
2λθ2

)
, (14)

Form very close to being inverse-gamma
To find the posterior mode, need to maximize p (λ|df ). Not easy!
Linearizing the Likelihood will simplify the problem:

p (df |λ) ≈ p (df |λf )︸ ︷︷ ︸
`

+
∂p (df |λ)

∂λ

∣∣
λf︸ ︷︷ ︸

`′

(λ− λf ) , (15)

λf is the mode of the prior distribution. Set ` = `/` ′:

(1 − λf/β) λ
2 + (`− 2λf ) λ+ (λ2

f − λf `) = 0 (16)
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Adaptive Posterior Inflation

Follow similar Bayes’ formulation:

p (λ|da) ∝ p(λ) · p (da|λ) (17)

Need to compute the likelihood, p (da|λ) ∼ N (E(da), var(da))

E (da) = E (εo) − E (εa) = 0, (18)

var (da) = E
(
ε2

o

)
+ E

(
ε2

a

)
− 2 E (εoεa)︸ ︷︷ ︸

6=0 correlated errors

,

= σ2
o + σ2

a − 2E
[
(1 − K ) εoεf + Kε2

o

]
,

· · ·
= σ2

o − σ2
a ≡ σ2

o − λσ̂2
a, (19)

where K = σ2
f

(
σ2

o + σ2
f

)−1. Thus,

p (da|λ) = (2π)−
1
2 exp

[
−

d2
a

2
(σ2

o − λσ̂2
a)

−1
](
σ2

o + λσ̂2
a

)− 1
2
. (20)
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Geometrical Interpretation (Prior vs Posterior)
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Ideal state and observation statistics
follow a circle

ensemble ones satisfy an ellipse

eccentricity, 0 < e < 1, a measure to
determine the deviation from circle

Ideal and ensemble-based statistics
follow hyperbolas

λ determines the degree of expansion
or contraction of the hyperbola

e > 1 also a measure of deviation
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Low-Order Models: Lorenz-63
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CAM Assimilation Results: Inflation Fields

15 / 17



Conclusion

Inflation is an important tool for ensemble Kalman filters
The adaptive algorithm is based on Bayes’ and uses
forecast/analysis innovations to update the inflation
With no model errors, posterior inflation produces higher quality
estimates than prior inflation (better treatment of sampling errors)
When model errors are dominant, as in CAM4, posterior inflation
is found less useful
Compelling results obtained by combining both prior and posterior
inflation
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