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The EnKF

@ State estimation tool
@ Given an observation y of state x, use Bayes:

P (Xklyk, Ye—1) = p (Xl Y—1) - P (Yl Xk, Yi—1) (1)
Ye: {y1.y2. ..., Yk—1. Yk}, k is time index
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P (Xklyk, Ye—1) = p (Xl Y—1) - P (Yl Xk, Yi—1) (1)
Ye: {y1.y2. ..., Yk—1. Yk}, k is time index

@ Successive Forecast and Update (Analysis) stages:
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N is the ensemble size



The EnKF cont.

12 T T T T T

£ Prior members

0.6 1

0.4 1 h

0.2 h

3/17



The EnKF cont.

T T
& Prior members
s Prior pdf

X;=45,062 =030

3/17



The EnKF cont.

1.2
& Prior members
s Prior pdf
1 | | === Obs pdf
X = 45,62 = 0.30
0.8 [ 1
=6.0,02 =0.20
% 0.6 | y o
o
0.4
02r
bk ol
0 |
2 3 4 5 6 7 8
X

3/17



The EnKF cont.
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The EnKF cont.
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The EnKF cont.

Some Drawbacks

1. Sampling Errors:

e ldeal scenario: N = co; 02 is out-of-reach!
e 02 depends on the ensemble size

lim 62(N) = o2

N—oo

e When N is small, 62 may underestimate o2
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The EnKF cont.

Some Drawbacks

1. Sampling Errors:

e ldeal scenario: N = co; 02 is out-of-reach!
e 02 depends on the ensemble size

lim 62(N) = o2
N—oc0
e When N is small, 62 may underestimate o2
2. Model Errors:

e Biased model produces ensemble predictions that are far from the
observations. May lead to ensemble collapse

The goal is to maintain enough spread in the ensemble




@ One way to increase of the variance of the ensemble is to inflate:
X« ﬁ(x"—?>+i 2)

while preserving the ensemble mean.
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@ One way to increase of the variance of the ensemble is to inflate:
X« ﬁ(x"—?>+i 2)

while preserving the ensemble mean.

@ Which variance to inflate: Prior (after the forecast) or posterior
(after the update)?

@ What to choose for A? 1.02 (2%), 1.04, 1.2, 10, ... ?
@ Why this is useful?
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Prior Inflation: A =3
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Higher spread: Larger uncertainty (less confidence in the estimates)! \
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Adaptive Prior Inflation |

@ |dea is to use the data to estimate the inflation parameter.
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@ |dea is to use the data to estimate the inflation parameter.
For a single variable case, denote the following:

Forecast (Background) error: ¢f ~ N (0, 0?) , (3)
Observation error: ¢ ~ N (0, U?,) , (4)
Analysis error: ¢5 ~ N (O, c§> ;02" 6262 /(02 + 02).  (5)
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Adaptive Prior Inflation |

@ |dea is to use the data to estimate the inflation parameter.
For a single variable case, denote the following:

Forecast (Background) error: ¢f ~ N (0, 0?) , (3)
Observation error: ¢ ~ N (0, cr?,) , (4)
Analysis error: ¢5 ~ N (O, c§> ;02" 6262 /(02 + 02).  (5)

The forecast innovation (discrepancy):
A=y —Xf=Yy—Xt+X— Xt =¢€o— &, (6)

where x; is the true value of the variable.

Bayesian Approach [Anderson 2007, Anderson 2009, EI Gharamti 2018]

p (Aldf) oc p(A) - p (fIA) (7)
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Adaptive Prior Inflation Il

@ Prior: p(A) prescribed .. a Gaussian, an inverse-Gamma
@ Likelihood: p(diA) ~ N (E(df), var (df))

E(df) =E (e —&f) =0, (8)

var (df) = 02 = E |(d; — E (d))?| ()
=K [5}2) — E0€f — Ef€0 + Eﬂ (10)

=02+ 0% (11)

N [62(7\) =05+ 7\8?] (12)

Assumptions:

1. Observation and forecast errors are uncorrelated; E [eqef] =0
2. Errors are associated only with the forecast variance. The
observation error variance o2 is known and is right!

3. Inflating the ensemble variance by A will match the theoretical
(hidden) forecast variance
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@ Posterior:
p(Nd) = 35(x,B)-N(0,62(N), (13)
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Adaptive Prior Inflation Il

@ Posterior:
p(Nd) = 35(x,B)-N(0,62(N), (13)

= ﬁ)\*“*1 exp (_B) . Lexp (_df2>
o) A V2n 202 )"

B ﬁoc}\—oc—1 _Lde
= V2ner(«) exp( 2)\62>’ (14)
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@ Posterior:
p(Nd) = 35(x,B)-N(0,62(N), (13)
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Adaptive Prior Inflation Il

@ Posterior:
p(Nd) = 35(x,B)-N(0,62(N), (13)
= ﬁ?\*"‘*1 ex (—B>‘ ! ex —d—fz
) PAUTN) Vome TP\ 202 )
B ﬁcx}\—oc—1 _Lde
T V2ner(«) eXp( 2)\62>' 14

e Form very close to being inverse-gamma
e To find the posterior mode, need to maximize p (A|ds). Not easy!
e Linearizing the Likelihood will simplify the problem:
op (dflA)
OA
@ el
Ar is the mode of the prior distribution. Set ¢ = {/¢’:
(1 —=A/BIN + (L —2A) A+ (A2 —Ai0) =0 (16)

p(AHN) ~ p(dfiA) + [, A=), (15)
\T/
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Adaptive Prior Inflation IV
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Adaptive Prior Inflation IV
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Adaptive Prior Inflation IV
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Adaptive Posterior Inflation

Follow similar Bayes’ formulation:
p (Aldz) o p(A) - p (dalA) (17)
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Adaptive Posterior Inflation

Follow similar Bayes’ formulation:

P (Alda) o< p(A) - p (dalA) (17)
Need to compute the likelihood, p (da|A) ~ N (E(d3), var(ds))

E(da) = E(eo) —E(ea) =0, (18)
var(dy) = E(3) +E(:3)-2 Eleoca)
N——
#0 correlated errors

= 02+025—2E [(1 - K) eosf—i-Keg] ,

= 05—0350%—7\83, (19)

where K = 02 (62 + 02) . Thus,

2 1

p(dal) = (20) exp [—d 7 (0

%02 _xagw] (o2 +262)



Geometrical Interpretation (Prior vs Posterior)
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Geometrical Interpretation (Prior vs Posterior)

Observation Error Projection

Ensemble
Statistics:
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True Statistics:
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Geometrical Interpretation (Prior vs Posterior)
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Geometrical Interpretation (Prior vs Posterior)
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Low-Order Models: Lorenz-96
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L96.mp4
Media File (video/mp4)


Low-Order Models: Lorenz-63
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CAM (The Community Atmosphere Model)

@ version: CESM2_0_beta05

@ resolution: 1.9° x 1.9° FV core;
LAT: 96,LON: 144,LEV: 26

@ State variables: surface pressure
(PS), sensible temperature (T),
wind components (U and V),
specific humidity (Q), cloud liquid
water (CLDLIQ) and cloud ice
(CLDICE).
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CAM (The Community Atmosphere Model)

@ version: CESM2_0_beta05

@ resolution: 1.9° x 1.9° FV core;
LAT: 96, LON: 144,LEV: 26 Observations available at 2010.09.06_00:00:00 UTC

@ State variables: surface pressure ST
(PS), sensible temperature (T),
wind components (U and V),
specific humidity (Q), cloud liquid
water (CLDLIQ) and cloud ice
(CLDICE).
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CAM Assimilation Results: Bias Treatment
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CAM Assimilation Results: Inflation Fields

15-Sep-2010
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Conclusion

@ Inflation is an important tool for ensemble Kalman filters

@ The adaptive algorithm is based on Bayes’ and uses
forecast/analysis innovations to update the inflation

@ With no model errors, posterior inflation produces higher quality
estimates than prior inflation (better treatment of sampling errors)

@ When model errors are dominant, as in CAM4, posterior inflation
is found less useful

@ Compelling results obtained by combining both prior and posterior
inflation
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Filters." Monthly Weather Review, 2, 623-640
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THANK YOU

DART webpage: https://dart.ucar.edu/

National Center for
NCARI|DART Aimasphorc Rosoarcn

WELCOME TO DART

DART has been reformulated to better support the ensemble data assimilation needs
of researchers who are interested in native netCDF support, less filesystem IO, better

computational performance, good scaling for large processor counts, and support for
the memory requirements of very large models. Manhattan has support for many of
our larger models (WRF, POP, CAM, CICE, CLM, ROMS, MPAS_ATM, ..) with many more
being added as time permits.

DOWNLOAD

THE DATA ASSIMILATION RESEARCH
TESTBED (DART)

DART is @ community facility for ensemble DA and maintained by the Data
Research Section (DAReS) at the National Center for Atmospheric Research (NCAR). DART provides
modelers, ional scientists, and icists with powerful, flexible DA tools that are easy to

implement and use and can be customized to support efficient operational DA applications. DART is a
software environment that makes it easy to explore a variety of data assimilation methods and
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