

Prior and Posterior Inflation for Ensemble Filters: Theoretical Formulation and Application to Community Atmosphere Model

Mohamad (Moha) E. Gharamti, NCAR, Boulder, CO

Co-authors: Kevin Raeder, Jeffrey Anderson, Xuguang Wang

2019 SIAM Conference on Computational Science and Engineering [Spokane, WA]

E-mail: gharamti@ucar.edu DART: http://www.image.ucar.edu/DAReS/DART/

Table of Contents

Motivation and Inflation Review

Inflation

Adaptive Prior Inflation Adaptive Posterior Inflation

The Community Atmosphere Model

Conclusions

1.1 Drawbacks (Errors) in Ensemble Filters

- Sampling Errors: results from using a limited ensemble size. Causes <u>underestimation</u> of the true variance
- Model Errors: biased model produces ensemble predictions that are typically far from the observations. Big discrepancies between the model's prediction and the observations may lead to an ensemble collapse

1.1 Drawbacks (Errors) in Ensemble Filters

- Sampling Errors: results from using a limited ensemble size. Causes <u>underestimation</u> of the true variance
- Model Errors: biased model produces ensemble predictions that are typically far from the observations. Big discrepancies between the model's prediction and the observations may lead to an ensemble collapse

Remedy: Preserve the mean and increase the ensemble variance through "inflation"

- multiplicative
- additive
- obs. space

* What inflation scheme is more effective at handling sampling/model errors? [Anderson 2009] Adaptive in space and time [Miyoshi 2011] Adaptive, Gaussian approximation [Gharamti 2018] Adaptive, Enhanced form, non-Gaussian

[Zhang et al. 2004] RTPP [Whitaker and Hamill 2012] RTPS [Hodyss 2016] OPI Observation-dependent

[Gharamti et al. 2019] Adaptive, non-Gaussian (in this talk!)

2.1 Innovation Statistics

Given a scalar variable with sample x^i and observation y_o

$$\overline{x}_{b|a} = \frac{1}{N} \sum_{i=1}^{N} x_{b|a}^{i}, \qquad \widehat{\sigma}_{b|a}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} \left(x_{b|a}^{i} - \overline{x}_{b|a} \right)^{2}$$
(1)

2.1 Innovation Statistics

Given a scalar variable with sample x^i and observation y_o

$$\overline{x}_{b|a} = \frac{1}{N} \sum_{i=1}^{N} x_{b|a}^{i}, \qquad \widehat{\sigma}_{b|a}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} \left(x_{b|a}^{i} - \overline{x}_{b|a} \right)^{2}$$
(1)

Background and Analysis innovations:

$$d_b = y_o - h\left(\overline{x}_b\right) \approx \varepsilon_o - \varepsilon_b,\tag{2}$$

$$d_a = y_o - h\left(\overline{x}_a\right) \approx \varepsilon_o - \varepsilon_a,\tag{3}$$

- Observation Error: $\varepsilon_o \sim \mathcal{N}\left(0, \sigma_o^2\right)$
- Background Error: $\varepsilon_b \sim \mathcal{N}\left(0, \sigma_b^2\right)$
- ► Analysis Error: $\varepsilon_a \sim \mathcal{N}\left(0, \sigma_a^2\right)$; $\sigma_a^2 \stackrel{\text{Kalman}}{=} \sigma_o^2 \sigma_b^2 / (\sigma_o^2 + \sigma_b^2)$

Initial effort by Anderson (2009). Inflation follows a distribution, estimated recursively following Bayes'

$$p(\lambda|d_b) \propto p(\lambda) \cdot p(d_b|\lambda)$$
. (4)

Prior:
$$p(\lambda) \sim \mathcal{N}\left(\lambda_b, \sigma_{\lambda_b}^2\right)$$
Gharamti (2018): $IG\left[\alpha\left(\lambda_b, \sigma_{\lambda,b}^2\right), \beta\left(\lambda_b, \sigma_{\lambda,b}^2\right)\right]$

• Likelihood: $p(d_b|\lambda) \sim \mathcal{N}(\mathbb{E}(d_b), var(d_b))$

$$\mathbb{E}(d_b) = \mathbb{E}(\varepsilon_o - \varepsilon_b) = 0, \tag{5}$$

$$var(d_b) = \mathbb{E}\left[\left(d_b - \mathbb{E} \left(d_b \right) \right)^2 \right] = \sigma_o^2 + \sigma_b^2 = \sigma_o^2 + \lambda_s \widehat{\sigma}_b^2 \quad (6)$$

assuming $\mathbb{E}(\varepsilon_o \varepsilon_b) = 0.$

Follow similar Bayes' formulation:

$$p(\lambda|d_a) \propto p(\lambda) \cdot p(d_a|\lambda)$$
. (7)

Follow similar Bayes' formulation:

$$p(\lambda|d_a) \propto p(\lambda) \cdot p(d_a|\lambda)$$
. (7)

Need to compute the likelihood, $p(d_a|\lambda) \sim \mathcal{N}(\mathbb{E}(d_a), var(d_a))$ For each observation j:

$$\mathbb{E} (d_{a,j}) = \mathbb{E} (\varepsilon_{o,j}) - \mathbb{E} (\varepsilon_{a,j}) = 0, \qquad (8)$$

$$var (d_{a,j}) = \mathbb{E} (\varepsilon_{o,j}^{2}) + \mathbb{E} (\varepsilon_{a,j}^{2}) - 2 \underbrace{\mathbb{E} (\varepsilon_{o,j} \varepsilon_{a,j})}_{\neq 0 \text{ correlated errors}}, \qquad (8)$$

$$= \sigma_{o,j}^{2} + \sigma_{a,j}^{2} - 2\mathbb{E} [(1 - k_{j}) \varepsilon_{o,j} \varepsilon_{a,j-1} + k_{j} \varepsilon_{o,j}^{2}], \qquad \dots$$

$$= \sigma_{o,j}^{2} - \sigma_{a,j}^{2} \equiv \sigma_{o,j}^{2} - \lambda_{s} \widehat{\sigma}_{a,j}^{2} \qquad (9)$$

Follow similar Bayes' formulation:

$$p(\lambda|d_a) \propto p(\lambda) \cdot p(d_a|\lambda)$$
. (7)

Need to compute the likelihood, $p(d_a|\lambda) \sim \mathcal{N}(\mathbb{E}(d_a), var(d_a))$ For each observation *j*:

$$\mathbb{E} (d_{a,j}) = \mathbb{E} (\varepsilon_{o,j}) - \mathbb{E} (\varepsilon_{a,j}) = 0, \qquad (8)$$

$$var (d_{a,j}) = \mathbb{E} (\varepsilon_{o,j}^{2}) + \mathbb{E} (\varepsilon_{a,j}^{2}) - 2 \underbrace{\mathbb{E} (\varepsilon_{o,j} \varepsilon_{a,j})}_{\neq 0 \text{ correlated errors}}, \qquad (8)$$

$$= \sigma_{o,j}^{2} + \sigma_{a,j}^{2} - 2\mathbb{E} [(1 - k_{j}) \varepsilon_{o,j} \varepsilon_{a,j-1} + k_{j} \varepsilon_{o,j}^{2}], \qquad \dots$$

$$= \sigma_{o,j}^{2} - \sigma_{a,j}^{2} \equiv \sigma_{o,j}^{2} - \lambda_{s} \widehat{\sigma}_{a,j}^{2} \qquad (9)$$
thus, $p (d_{a}|\lambda) = (2\pi)^{-\frac{1}{2}} \exp \left[-\frac{1}{2} d_{a}^{2} (\sigma_{o}^{2} - \lambda_{s} \widehat{\sigma}_{a}^{2})^{-1}\right] (\sigma_{o}^{2} + \lambda_{s} \widehat{\sigma}_{a}^{2})^{-\frac{1}{2}}$

First, update the state using all observations. For each observation j:

First, update the state using all observations. For each observation j:

1. Remove its impact from both the analysis mean and variance

$$\widetilde{\sigma}_{a,j}^2 = \left(\sigma_{a,j}^{-2} - \sigma_{o,j}^{-2}\right)^{-1}$$
, (10)

$$\widetilde{y}_{a,j} = \widetilde{\sigma}_{a,j}^2 \left(y_{a,j} \sigma_{a,j}^{-2} - y_{o,j} \sigma_{o,j}^{-2} \right).$$
(11)

The posterior value of observation j is: $y_{a,j} = h_j(\overline{x}_a)$

First, update the state using all observations. For each observation j:

1. Remove its impact from both the analysis mean and variance

$$\widetilde{\sigma}_{a,j}^2 = \left(\sigma_{a,j}^{-2} - \sigma_{o,j}^{-2}\right)^{-1}$$
, (10)

$$\widetilde{y}_{a,j} = \widetilde{\sigma}_{a,j}^2 \left(y_{a,j} \sigma_{a,j}^{-2} - y_{o,j} \sigma_{o,j}^{-2} \right).$$
(11)

The posterior value of observation j is: $y_{a,j} = h_j(\overline{x}_a)$

2. New innovation: $\widetilde{d}_{a,j} = y_{o,j} - \widetilde{y}_{a,j} = \varepsilon_{o,j} - \widetilde{\varepsilon}_{a,j}$, where $\widetilde{\varepsilon}_{a,j} \sim \mathcal{N}\left(0, \widetilde{\sigma}_{a,j}^2\right)$

First, update the state using all observations. For each observation j:

 $1. \ \mbox{Remove its impact from both the analysis mean and variance}$

$$\widetilde{\sigma}_{a,j}^2 = \left(\sigma_{a,j}^{-2} - \sigma_{o,j}^{-2}\right)^{-1}$$
, (10)

$$\widetilde{y}_{a,j} = \widetilde{\sigma}_{a,j}^2 \left(y_{a,j} \sigma_{a,j}^{-2} - y_{o,j} \sigma_{o,j}^{-2} \right).$$
(11)

The posterior value of observation j is: $y_{a,j} = h_j(\overline{x}_a)$

- 2. New innovation: $\widetilde{d}_{a,j} = y_{o,j} \widetilde{y}_{a,j} = \varepsilon_{o,j} \widetilde{\varepsilon}_{a,j}$, where $\widetilde{\varepsilon}_{a,j} \sim \mathcal{N}\left(0, \widetilde{\sigma}_{a,j}^2\right)$
- 3. Construct the Gaussian inflation likelihood function with moments:

$$\mathbb{E}\left(\widetilde{d}_{a,j}\right) = 0,\tag{12}$$

$$var\left(\tilde{d}_{a,j}\right) = \mathbb{E}\left(\varepsilon_{o,j}^{2}\right) + \mathbb{E}\left(\tilde{\varepsilon}_{a,j}^{2}\right) - 2\underbrace{\mathbb{E}\left(\varepsilon_{o,j}\tilde{\varepsilon}_{a,j}\right)}_{=0} = \sigma_{o,j}^{2} + \tilde{\sigma}_{a,j}^{2}.$$
(13)

First, update the state using all observations. For each observation j:

1. Remove its impact from both the analysis mean and variance

$$\widetilde{\sigma}_{a,j}^2 = \left(\sigma_{a,j}^{-2} - \sigma_{o,j}^{-2}\right)^{-1}$$
, (10)

$$\widetilde{y}_{a,j} = \widetilde{\sigma}_{a,j}^2 \left(y_{a,j} \sigma_{a,j}^{-2} - y_{o,j} \sigma_{o,j}^{-2} \right).$$
(11)

The posterior value of observation j is: $y_{a,j} = h_j(\overline{x}_a)$

- 2. New innovation: $\widetilde{d}_{a,j} = y_{o,j} \widetilde{y}_{a,j} = \varepsilon_{o,j} \widetilde{\varepsilon}_{a,j}$, where $\widetilde{\varepsilon}_{a,j} \sim \mathcal{N}\left(0, \widetilde{\sigma}_{a,j}^2\right)$
- 3. Construct the Gaussian inflation likelihood function with moments:

$$\mathbb{E}\left(\tilde{d}_{a,j}\right) = 0,\tag{12}$$

$$var\left(\tilde{d}_{a,j}\right) = \mathbb{E}\left(\varepsilon_{o,j}^{2}\right) + \mathbb{E}\left(\tilde{\varepsilon}_{a,j}^{2}\right) - 2\underbrace{\mathbb{E}\left(\varepsilon_{o,j}\tilde{\varepsilon}_{a,j}\right)}_{=0} = \sigma_{o,j}^{2} + \tilde{\sigma}_{a,j}^{2}.$$
(13)

4. Update λ and its variance using exactly the same procedure as AI-b

First, update the state using all observations. For each observation j:

 $1. \ \mbox{Remove its impact from both the analysis mean and variance}$

$$\widetilde{\sigma}_{a,j}^2 = \left(\sigma_{a,j}^{-2} - \sigma_{o,j}^{-2}\right)^{-1}$$
, (10)

$$\widetilde{y}_{a,j} = \widetilde{\sigma}_{a,j}^2 \left(y_{a,j} \sigma_{a,j}^{-2} - y_{o,j} \sigma_{o,j}^{-2} \right).$$
(11)

The posterior value of observation j is: $y_{a,j} = h_j(\overline{x}_a)$

- 2. New innovation: $\widetilde{d}_{a,j} = y_{o,j} \widetilde{y}_{a,j} = \varepsilon_{o,j} \widetilde{\varepsilon}_{a,j}$, where $\widetilde{\varepsilon}_{a,j} \sim \mathcal{N}\left(0, \widetilde{\sigma}_{a,j}^2\right)$
- 3. Construct the Gaussian inflation likelihood function with moments:

$$\mathbb{E}\left(\widetilde{d}_{a,j}\right) = 0,\tag{12}$$

$$var\left(\tilde{d}_{a,j}\right) = \mathbb{E}\left(\varepsilon_{o,j}^{2}\right) + \mathbb{E}\left(\tilde{\varepsilon}_{a,j}^{2}\right) - 2\underbrace{\mathbb{E}\left(\varepsilon_{o,j}\tilde{\varepsilon}_{a,j}\right)}_{=0} = \sigma_{o,j}^{2} + \tilde{\sigma}_{a,j}^{2}.$$
(13)

4. Update λ and its variance using exactly the same procedure as AI-b

* Requires additional evaluation of eqs. (10) and (11) * Less invasive to available adaptive prior inflation code

- Ideal state and observation statistics follow a circle
- ensemble ones satisfy an ellipse
- eccentricity, 0 < e < 1, a measure to determine the deviation from circle

- ensemble ones satisfy an ellipse
- eccentricity, 0 < e < 1, a measure to determine the deviation from circle

- Ideal state and observation statistics follow a circle
- ensemble ones satisfy an ellipse
- eccentricity, 0 < e < 1, a measure to determine the deviation from circle

- Ideal and ensemble-based statistics follow hyperbolas
- λ determines the degree of expansion or contraction of the hyperbola
- e > 1 also a measure of deviation

2.5 Algorithmic Features

 Being based on the posterior innovations, the proposed posterior inflation algorithm increases the variance proportional to the size of the innovation

2.5 Algorithmic Features

 Being based on the posterior innovations, the proposed posterior inflation algorithm increases the variance proportional to the size of the innovation

2. Consistent MSE and VAR

2.5 Algorithmic Features

 Being based on the posterior innovations, the proposed posterior inflation algorithm increases the variance proportional to the size of the innovation

Content

2. Consistent MSE and VAR

3. Information Content: $\frac{\partial \overline{x}_a}{\partial y_o}$ Al-b > Al-a

2.6 Lorenz 63: OSSE example

3.1 CAM (The Community Atmosphere Model)

- version: CESM2_0_beta05
- resolution: 1.9° × 1.9° FV core; LAT: 96, LON: 144, LEV: 26
- State variables: surface pressure (PS), sensible temperature (T), wind components (U and V), specific humidity (Q), cloud liquid water (CLDLIQ) and cloud ice (CLDICE).

3.1 CAM (The Community Atmosphere Model)

- version: CESM2_0_beta05
- resolution: 1.9° × 1.9° FV core; LAT: 96, LON: 144, LEV: 26
- State variables: surface pressure (PS), sensible temperature (T), wind components (U and V), specific humidity (Q), cloud liquid water (CLDLIQ) and cloud ice (CLDICE).
- single state spinup, 80 members ensemble initialization
- DA (EAKF) between 08.16.2010 to 09.30.2010
- data available every 6 hours: wind and temperature observations from radiosondes, ACARS and aircraft along with GPS radio occultation

3.1 CAM (The Community Atmosphere Model)

- version: CESM2_0_beta05
- resolution: 1.9° × 1.9° FV core; LAT: 96, LON: 144, LEV: 26
- State variables: surface pressure (PS), sensible temperature (T), wind components (U and V), specific humidity (Q), cloud liquid water (CLDLIQ) and cloud ice (CLDICE).
- single state spinup, 80 members ensemble initialization
- DA (EAKF) between 08.16.2010 to 09.30.2010
- data available every 6 hours: wind and temperature observations from radiosondes, ACARS and aircraft along with GPS radio occultation

- ► Horizontal localization cutoff: 0.15 radians (≈ 960 km)
- Vertical localization: half-width of Gaspari Cohn profile is 0.375 scale heights
- DART: latest 'Manhattan' release

3.2 Assimilation Results: AI-a vs. RTPS

RMSE(AI-a) - RMSE (best tuned RTPS)

red (negative difference) means AI-a is more accurate

3.3 Assimilation Results

Bias Treatment

- Radiosonde humidity (Q) is not assimilated, only evaluated for verification
- Largest biases are near the surface
- Al-b is more effective than Al-a at reducing the bias
- Best performance is suggested by AI-ab (both prior and posterior are adaptively inflated)

3.3 Assimilation Results

Bias Treatment cont.

Lonaitude

latitude

ACARS: T (6732 locations)

Al-ab, Average bias: 0.08 K

 $\times 10^4$

10

3.4 Assimilation Results

Increments & Spread

- T increments at ~ 697 hPa and average ensemble spread
- Major updates happen in the southern and northern extratropics
- Strong cooling at low latitudes; given CAM4's warming bias
- Al-a suggests smallest increments and spread (less information content compared to Al-b and Al-ab)

3.5 Assimilation Results Inflation Fields

- Average inflation maps (panels A, D, E and F) and the time-correlation between Al-ab inflation and those of Al-b (panel B) and Al-a (panel C)
- $\sqrt{\lambda_{ab}^{b}}$ (prior inflation of Al-ab) and $\sqrt{\lambda_{ab}^{a}}$ (posterior inflation of Al-ab) are highly correlated with $\sqrt{\lambda_{b}}$ (prior inflation of Al-b) and $\sqrt{\lambda_{a}}$ (posterior inflation of Al-a), respectively
- Arctic and the Antarctic Circles experience a 20% deflation which could be attributed to the sparsity of observations

4. Conclusion

- Proposed a spatially and temporally varying adaptive posterior covariance inflation (AI-a)
- The algorithm is based on Bayes' and uses analysis innovations to update the inflation
- With no model errors, Al-a resulted in higher quality estimates than Al-b (better treatment of sampling errors)
- When model errors are dominant, as in CAM4, AI-a was found less useful
- Compelling results obtained by combining both AI-b and AI-a

4. Conclusion

- Proposed a spatially and temporally varying adaptive posterior covariance inflation (Al-a)
- The algorithm is based on Bayes' and uses analysis innovations to update the inflation
- With no model errors, Al-a resulted in higher quality estimates than Al-b (better treatment of sampling errors)
- When model errors are dominant, as in CAM4, AI-a was found less useful
- Compelling results obtained by combining both AI-b and AI-a
- Gharamti, M. E. "Enhanced Adaptive Inflation Algorithm for Ensemble Filters." *Monthly Weather Review*, 2, 623-640
- II. Gharamti, M. E., Raeder, K., Anderson, J. and Wang, X. "Comparing Adaptive Prior and Posterior Inflation for Ensemble Filters Using an Atmospheric General Circulation Model." *Monthly Weather Review*, to appear