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1.1 Drawbacks (Errors) in Ensemble Filters

▶ Sampling Errors: results from using a limited ensemble size.
Causes underestimation of the true variance

▶ Model Errors: biased model produces ensemble predictions that
are typically far from the observations. Big discrepancies between
the model’s prediction and the observations may lead to an
ensemble collapse

Remedy: Preserve the mean
and increase the ensemble
variance through “inflation"

- multiplicative
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1.2 Inflate the Prior or Posterior?

Model Filter

initial
ensemble

prior posterior

[Anderson 2009] Adaptive in
space and time

[Miyoshi 2011] Adaptive,
Gaussian approximation

[Gharamti 2018] Adaptive,
Enhanced form,
non-Gaussian
...

[Zhang et al. 2004] RTPP
[Whitaker and Hamill 2012]

RTPS
[Hodyss 2016] OPI

Observation-dependent
[Gharamti et al. 2019]

Adaptive, non-Gaussian
(in this talk!)

⋆ What inflation
scheme is more
effective at handling
sampling/model
errors?

⋆ How about combining
both prior and posterior
inflation?



3/17

1.2 Inflate the Prior or Posterior?

Model Filter

initial
ensemble

prior posterior

[Anderson 2009] Adaptive in
space and time

[Miyoshi 2011] Adaptive,
Gaussian approximation

[Gharamti 2018] Adaptive,
Enhanced form,
non-Gaussian
...

[Zhang et al. 2004] RTPP
[Whitaker and Hamill 2012]

RTPS
[Hodyss 2016] OPI

Observation-dependent
[Gharamti et al. 2019]

Adaptive, non-Gaussian
(in this talk!)

⋆ What inflation
scheme is more
effective at handling
sampling/model
errors?

⋆ How about combining
both prior and posterior
inflation?



3/17

1.2 Inflate the Prior or Posterior?

Model Filter

initial
ensemble

prior posterior

[Anderson 2009] Adaptive in
space and time

[Miyoshi 2011] Adaptive,
Gaussian approximation

[Gharamti 2018] Adaptive,
Enhanced form,
non-Gaussian
...

[Zhang et al. 2004] RTPP
[Whitaker and Hamill 2012]

RTPS
[Hodyss 2016] OPI

Observation-dependent
[Gharamti et al. 2019]

Adaptive, non-Gaussian
(in this talk!)

⋆ What inflation
scheme is more
effective at handling
sampling/model
errors?

⋆ How about combining
both prior and posterior
inflation?



3/17

1.2 Inflate the Prior or Posterior?

Model Filter

initial
ensemble

prior posterior

[Anderson 2009] Adaptive in
space and time

[Miyoshi 2011] Adaptive,
Gaussian approximation

[Gharamti 2018] Adaptive,
Enhanced form,
non-Gaussian
...

[Zhang et al. 2004] RTPP
[Whitaker and Hamill 2012]

RTPS
[Hodyss 2016] OPI

Observation-dependent
[Gharamti et al. 2019]

Adaptive, non-Gaussian
(in this talk!)

⋆ What inflation
scheme is more
effective at handling
sampling/model
errors?

⋆ How about combining
both prior and posterior
inflation?



3/17

1.2 Inflate the Prior or Posterior?

Model Filter

initial
ensemble

prior posterior

[Anderson 2009] Adaptive in
space and time

[Miyoshi 2011] Adaptive,
Gaussian approximation

[Gharamti 2018] Adaptive,
Enhanced form,
non-Gaussian
...

[Zhang et al. 2004] RTPP
[Whitaker and Hamill 2012]

RTPS
[Hodyss 2016] OPI

Observation-dependent
[Gharamti et al. 2019]

Adaptive, non-Gaussian
(in this talk!)

⋆ What inflation
scheme is more
effective at handling
sampling/model
errors?

⋆ How about combining
both prior and posterior
inflation?



4/17

2.1 Innovation Statistics

Given a scalar variable with sample x i and observation yo

xb|a =
1
N

N∑
i=1

x i
b|a, σ̂2

b|a =
1

N − 1

N∑
i=1

(
x i

b|a − xb|a

)2
(1)

Background and Analysis innovations:
db = yo − h (xb) ≈ εo − εb, (2)
da = yo − h (xa) ≈ εo − εa, (3)

▶ Observation Error: εo ∼ N
(
0,σ2

o
)

▶ Background Error: εb ∼ N
(
0,σ2

b
)

▶ Analysis Error: εa ∼ N
(
0,σ2

a
)
; σ2

a
Kalman
= σ2

oσ
2
b/(σ

2
o + σ2

b)
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2.2 Adaptive Prior Inflation, AI-b

Initial effort by Anderson (2009). Inflation follows a distribution,
estimated recursively following Bayes’

p (λ|db) ∝ p (λ) · p (db|λ) . (4)

▶ Prior: p (λ) ∼ N
(
λb,σ2

λb

)
▶ Gharamti (2018): IG

[
α
(
λb,σ2

λ,b
)

,β
(
λb,σ2

λ,b
)]

▶ Likelihood: p (db|λ) ∼ N (E(db), var(db))

E (db) = E (εo − εb) = 0, (5)

var (db) = E
[
(db − E (db))

2
]
= σ2

o + σ2
b = σ2

o + λsσ̂
2
b (6)

assuming E (εoεb) = 0.
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2.2 Adaptive Posterior Inflation, AI-a

Follow similar Bayes’ formulation:

p (λ|da) ∝ p (λ) · p (da |λ) . (7)

Need to compute the likelihood, p (da |λ) ∼ N (E(da), var(da))

For each observation j:

E (da,j) = E (εo,j) − E (εa,j) = 0, (8)
var (da,j) = E

(
ε2

o,j
)
+ E

(
ε2

a,j
)
− 2 E (εo,jεa,j)︸ ︷︷ ︸

̸=0 correlated errors

,

= σ2
o,j + σ2

a,j − 2E
[
(1 − kj) εo,jεa,j−1 + kjε

2
o,j
]

,
· · ·
= σ2

o,j − σ2
a,j ≡ σ2

o,j − λsσ̂
2
a,j (9)

thus, p (da |λ) = (2π)− 1
2 exp

[
−1

2d2
a(σ

2
o − λsσ̂

2
a)

−1] (σ2
o + λsσ̂

2
a)

− 1
2
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2.3 Modified Adaptive Posterior Inflation, mAI-a
First, update the state using all observations. For each observation j:

1. Remove its impact from both the analysis mean and variance

σ̃2
a,j =

(
σ−2

a,j − σ−2
o,j

)−1 , (10)
ỹa,j = σ̃2

a,j
(
ya,jσ

−2
a,j − yo,jσ

−2
o,j

)
. (11)

The posterior value of observation j is: ya,j = hj(xa)

2. New innovation: d̃a,j = yo,j − ỹa,j = εo,j − ε̃a,j , where ε̃a,j ∼ N
(
0, σ̃2

a,j
)

3. Construct the Gaussian inflation likelihood function with moments:

E
(

d̃a,j

)
= 0, (12)

var
(

d̃a,j

)
= E

(
ε2

o,j
)
+ E

(
ε̃2

a,j
)
− 2E (εo,j ε̃a,j)︸ ︷︷ ︸

=0

= σ2
o,j + σ̃2

a,j . (13)

4. Update λ and its variance using exactly the same procedure as AI-b

⋆ Requires additional evaluation of eqs. (10) and (11)
⋆ Less invasive to available adaptive prior inflation code
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2. New innovation: d̃a,j = yo,j − ỹa,j = εo,j − ε̃a,j , where ε̃a,j ∼ N
(
0, σ̃2

a,j
)

3. Construct the Gaussian inflation likelihood function with moments:

E
(

d̃a,j

)
= 0, (12)

var
(

d̃a,j

)
= E

(
ε2

o,j
)
+ E

(
ε̃2

a,j
)
− 2E (εo,j ε̃a,j)︸ ︷︷ ︸

=0

= σ2
o,j + σ̃2

a,j . (13)

4. Update λ and its variance using exactly the same procedure as AI-b

⋆ Requires additional evaluation of eqs. (10) and (11)
⋆ Less invasive to available adaptive prior inflation code



7/17

2.3 Modified Adaptive Posterior Inflation, mAI-a
First, update the state using all observations. For each observation j:

1. Remove its impact from both the analysis mean and variance

σ̃2
a,j =

(
σ−2

a,j − σ−2
o,j

)−1 , (10)
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2. New innovation: d̃a,j = yo,j − ỹa,j = εo,j − ε̃a,j , where ε̃a,j ∼ N
(
0, σ̃2

a,j
)

3. Construct the Gaussian inflation likelihood function with moments:

E
(

d̃a,j

)
= 0, (12)

var
(

d̃a,j

)
= E

(
ε2

o,j
)
+ E

(
ε̃2

a,j
)
− 2E (εo,j ε̃a,j)︸ ︷︷ ︸

=0

= σ2
o,j + σ̃2

a,j . (13)

4. Update λ and its variance using exactly the same procedure as AI-b

⋆ Requires additional evaluation of eqs. (10) and (11)
⋆ Less invasive to available adaptive prior inflation code



7/17

2.3 Modified Adaptive Posterior Inflation, mAI-a
First, update the state using all observations. For each observation j:

1. Remove its impact from both the analysis mean and variance

σ̃2
a,j =

(
σ−2

a,j − σ−2
o,j

)−1 , (10)
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⋆ Requires additional evaluation of eqs. (10) and (11)
⋆ Less invasive to available adaptive prior inflation code
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2.4 Geometrical Interpretation

▶ Ideal state and observation statistics
follow a circle

▶ ensemble ones satisfy an ellipse
▶ eccentricity, 0 < e < 1, a measure to

determine the deviation from circle

▶ Ideal and ensemble-based statistics
follow hyperbolas

▶ λ determines the degree of expansion or
contraction of the hyperbola

▶ e > 1 also a measure of deviation
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2.5 Algorithmic Features
1. Being based on the posterior

innovations, the proposed posterior
inflation algorithm increases the
variance proportional to the size of
the innovation

2. Consistent MSE and VAR

3. Information Content: ∂xa
∂yo

AI-b > AI-a
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2.6 Lorenz 63: OSSE example
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3.1 CAM (The Community Atmosphere Model)

▶ version: CESM2_0_beta05

▶ resolution: 1.9◦ × 1.9◦ FV core;
LAT: 96, LON: 144, LEV: 26

▶ State variables: surface pressure
(PS), sensible temperature (T),
wind components (U and V),
specific humidity (Q), cloud liquid
water (CLDLIQ) and cloud ice
(CLDICE).

▶ single state spinup, 80 members
ensemble initialization

▶ DA (EAKF) between 08.16.2010
to 09.30.2010

▶ data available every 6 hours: wind
and temperature observations from
radiosondes, ACARS and aircraft
along with GPS radio occultation

▶ Horizontal localization cutoff: 0.15
radians (≈ 960 km)

▶ Vertical localization: half-width of
Gaspari Cohn profile is 0.375 scale
heights

▶ DART: latest ‘Manhattan’ release
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3.2 Assimilation Results: AI-a vs. RTPS
GPSRO refractivity, 0.0147
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▶ red (negative difference) means AI-a is more accurate
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3.3 Assimilation Results
Bias Treatment
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▶ Radiosonde humidity (Q) is
not assimilated, only
evaluated for verification

▶ Largest biases are near the
surface

▶ AI-b is more effective than
AI-a at reducing the bias

▶ Best performance is
suggested by AI-ab (both
prior and posterior are
adaptively inflated)
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3.3 Assimilation Results
Bias Treatment cont.
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3.4 Assimilation Results
Increments & Spread
▶ T increments at ∼ 697

hPa and average ensemble
spread

▶ Major updates happen in
the southern and northern
extratropics

▶ Strong cooling at low
latitudes; given CAM4’s
warming bias

▶ AI-a suggests smallest
increments and spread
(less information content
compared to AI-b and
AI-ab)
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3.5 Assimilation Results
Inflation Fields
▶ Average inflation maps

(panels A, D, E and F) and
the time-correlation between
AI-ab inflation and those of
AI-b (panel B) and AI-a
(panel C)

▶
√
λb

ab (prior inflation of
AI-ab) and

√
λa

ab (posterior
inflation of AI-ab) are highly
correlated with

√
λb (prior

inflation of AI-b) and
√
λa

(posterior inflation of AI-a),
respectively

▶ Arctic and the Antarctic
Circles experience a 20%
deflation which could be
attributed to the sparsity of
observations
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4. Conclusion
▶ Proposed a spatially and temporally varying adaptive posterior

covariance inflation (AI-a)
▶ The algorithm is based on Bayes’ and uses analysis

innovations to update the inflation
▶ With no model errors, AI-a resulted in higher quality estimates

than AI-b (better treatment of sampling errors)
▶ When model errors are dominant, as in CAM4, AI-a was

found less useful
▶ Compelling results obtained by combining both AI-b and AI-a
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