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1. Preliminaries

e Prior distribution p (x|xk—1, Yr—1) ~ N (xf,P})

Mean:

Covariance:

1
x| = N X i=1,2,...,N (1)
i=1
1 ; ; T
Pl= 12 (07 = %) (xE7 = xf) (2)
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e The ensemble Kalman filter (EnKF) provides reliable background error
covariances for large ensemble sizes

e (For now) we can't afford large ensembles especially in earth systems

e The use of small ensembles

> causes the EnKF to be rank-deficient,
> background variances are underestimated, and
> generally results in low-quality forecasts

)
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Covariance Rank: 19 Covariance Rank: 100
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Ensemble Size: 20 Ensemble Size: "BIG"

e Holy Covariance: B = lim P¢

N—oo

e Ways to fix/improve P®

1.

Inflation: increases the variance, rank stays unchanged (spatially-const)
— Multiplicative (prior, posterior), Additive, Relaxation

Localization: removes spurious correlations, increases the rank

— Covariance, local analysis

Mutli-configuration|physics ensemble



2.1 Hybrid EnKF-Ol: Terminologies

e Ol: Optimal Interpolation (essentially a KF with a prescribed invariant P*)
e Often referred to as EnKF-3DVar
e |nitial effort by Hamill and Snyder (2000)
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2.1 Hybrid EnKF-Ol: Terminologies

e Ol: Optimal Interpolation (essentially a KF with a prescribed invariant P*)
e Often referred to as EnKF-3DVar
e |nitial effort by Hamill and Snyder (2000)

What'’s the idea?

Use a background covariance in the EnKF that is an “average” (weighted
sum) of a flow-dependent background error covariance estimated from an
ensemble and a predefined static covariance from a 3DVar or an Ol system

e Many different hybrid forms in the literature

e Here, we adopt the following covariance-hybridizing form

P=oP°+(1-a)B



2.2 How to construct B

e Available from 3DVar systems

o Formed using large inventory of historical forecasts over large windows
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2.2 How to construct B

Available from 3DVar systems
Formed using large inventory of historical forecasts over large windows

Spectral decomposition is desirable

B=5QS" =557, (3)
where S = SQ.
Succession of transform operators, B = B/2B7/2

B2 = U,SU,U, (4)

Storage issue: B is of size (N, x N,) where N, is the dimension of the state

e The proposed adaptive scheme only requires knowledge of the historical
(climatology) realizations and not the full B!
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2.3 Hybrid EnKF-Ol: Adaptive Form

How to choose «a?
o The ensemble statistics should satisfy:
E[dd"] =R+HP'HT, (5)
where d = y° — Hx’. Substitute the hybrid covariance form in eq. (5):
E[dd"] = R+ aHP*H” + (1 - a)HBH', (6)

« is a scalar coefficient.

e Algorithm:

Assume « to be a random variable

Start with a prior distribution for a: p(a) ~ N, B, ..
Use the data to construct a likelihood function: p(d|«)
Use Bayes' rule to find an updated estimate of a:

plald) ~ p(a) - p(d|a) (7)

> Posterior o can be used as the prior for the next DA cycle

vV vV VvV V

6/14



2.4 Hybrid EnKF-Ol: lllustration

Bayes Update for Weighting Factor

2.5 T
——Normal: M=0.50, V=0.05 Gaussian Post Beta Post
) == Beta: M=0.50, V=0.05 /\/(0.66,0.03) B(4.33.2.08
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Vary both ¢2 and o2

and fix o}
> Small Bias . Moderate Bias . Large Bias
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Vary both ¢2 and o2 Purplish: More weight on ensemble covariance

and fix gg Brownish: More weight on static covariance
> Small Bias . Moderate Bias . Large Bias
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Understanding the behavior of the algorithm

e When both variances match, equal weight is placed (i.e., & = 0.5)
e Large bias: more weight on the larger variance to better fit the obs
e Small bias: good estimate; more weight on the smaller variance

e Moderate bias: alternate between the ensemble and the static variance
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019 059 099

Vary both ¢2 and o2 Purplish: More weight on ensemble covariance
and fix o2 Brownish: More weight on static covariance
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2.5 Hybrid EnKF-Ol: Adaptive in space

e State variables may be hybridized differently, why?

> Biases are not homogenous in space
> Heterogenous observation networks (densely observed regions tend to have
small ensemble spread)



2.5 Hybrid EnKF-Ol: Adaptive in space

e State variables may be hybridized differently, why?

> Biases are not homogenous in space
> Heterogenous observation networks (densely observed regions tend to have
small ensemble spread)

e Need to assimilate observations serially. For each observation:

> Compute correlation coefficient between the observed prior ensemble,
yf, and all state variables:

_ : fof
pj = correlation (y ,Xj) ,

where the hybrid weighting factor is assumed to have the same
correlation field (Anderson 2009, EI Gharamti 2018). Thus,

d* = o5 + pjacs + (1 - pja)o?

> Find the posterior based on the modified likelihood and associated prior



3.1 Experiments using L96: Ensemble Size

L96: 40 variables

Observe every other
variable (total of 20)

Observe every 5 time
steps (dt = 0.05)

R=1

B Climatological run
(1000 realizations)

No inflation
No localization

p(a) ~ N(0.5,0.1)
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3.1 Experiments using L96: Ensemble Size

. EnKF

. EnOl: EnKF with fixed B
(Hybrid; o = 0)

. EnKF-Ol; « = 0.5

. AC-EnKF-Ol: Adaptive

spatially-Constant
EnKF-Ol

. AV-EnKF-Ol: Adaptive
spatially-Varying EnKF-OlI
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3.1 Experiments using L96: Ensemble Size

o AC-EnKF-OlI: Dashed lines
e AV-EnKF-Ol: Solid lines

Weighting Factor
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3.1 Experiments using L96: Ensemble Size

AC-EnKF-Ol: Dashed lines
AV-EnKF-Ol: Solid lines

For small ensembles, both
adaptive spatially-constant
and varying schemes behave
the same

Being spatially-varying,
AV-EnKF-Ol responds more
efficiently to changes in the
ensemble
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3.2 Experiments

® Ensemble size: 20

® Model error; vary
3<F<L13

— 115
® B is generated in each

case using biased F

® No localization

using L96: Model Error & Inflation
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3.2 Experiments using L96: Model Error & Inflation

EnKF AV-EnKF-Ol
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Localization cutoff
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3.3 Experiments using L96: Model Error &
Localization
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Localization cutoff

3.3 Experiments using L96: Model Error &

12 18
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e N, = 20, No inflation

® Vary both F and localization length scale

Forcmg

® Adaptive hybrid scheme is systematically better than the EnKF for all tested cases
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3.3 Experiments using L96: Model Error &

Localization

Average Ensemble Spread Ratio
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Localization cutoff

3.3 Experiments using L96: Model Error &

Localizati
Average Ensemble Spread Ratio Hybrid Weighting Factor
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® For chaotic behaviour (i.e., F > 8): As localization increases, « increases
® Less chaotic (smaller ensemble variance): « decreases to bring-in variability from B

. Ensemble Spread .
® |eft panel: “Hiybrid Smread + NOtE the small spread in the ensemble for F < 8
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3.4 Experiments using L96: Observation Network

e Data Void I: Observe
the first 20 variables

e Data Void Il: Observe
the first and last 5
variables

e Data Void Ill: Observe
10 variables in the
center

e Data Void IV: Observe
5 variables in the center

Hybrid Weighting Factor

0.9

0.89

0.88

= Data Void |
Data Void Il X
. il
= Data Void Ill - *
15 * *
— i ¥ N
Data Void IV RMSE
Spread
. il
| I 1]} [\
I I I I I I I
5 10 15 20 25 30 35

State Variables
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3.4 Experiments using L96: Observation Network

e Data Void I: Observe
the first 20 variables

e Data Void Il: Observe
the first and last 5
variables

e Data Void Ill: Observe
10 variables in the
center

e Data Void IV: Observe
5 variables in the center

0.94

Hybrid Weighting Factor
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*
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State Variables

® In densely observed regions, the ensemble spread decreases. To counteract this,
hybrid scheme places more on B to increase the variance and allow the filter to

better fit the data
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4. Conclusion

Presented a new temporally and spatially varying adaptive hybrid EnKF-OI scheme

The adaptive scheme uses the data and applies Bayes rule to determine the relative
weighting between the ensemble and the static covariance

The spatially-adaptive scheme — for now — does not support data that are not on
the state grid (e.g., radiances)

Tests using the Lorenz-96 system
Future tests in high-order models (B-grid, CAM, WRF-Hydro ..)
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® Presented a new temporally and spatially varying adaptive hybrid EnKF-OI scheme

® The adaptive scheme uses the data and applies Bayes rule to determine the relative
weighting between the ensemble and the static covariance

® The spatially-adaptive scheme — for now — does not support data that are not on
the state grid (e.g., radiances)

® Tests using the Lorenz-96 system
e Future tests in high-order models (B-grid, CAM, WRF-Hydro ..)

EnKF Adaptive Hybrid EnKF-OlI
— Only flow-dependent covariance — Ol flavor and flow-dependent information
— Requires a large ensemble size — Works well with fairly small ensembles
— Fair computational cost — Storage, additional 10 cost
— Strong tuning (inf, loc, ..) — Fully adaptive, requires less inf, loc, ..
— Strong biases cause divergence — More stable; able to switch to EnOl
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