

A new adaptive hybrid ensemble Kalman filter and optimal interpolation

Moha Gharamti 100th AMS Annual Meeting, Boston, MA

National Center for Atmospheric Research Boulder, Colorado

Tuesday 14th, 2020

1. Preliminaries

• Prior distribution $p(\mathbf{x}_k | \mathbf{x}_{k-1}, \mathbf{Y}_{k-1}) \sim \mathcal{N}\left(\mathbf{x}_k^f, \mathbf{P}_k^f\right)$

Mean:
$$\mathbf{x}_{k}^{f} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{k}^{f,i}, \quad i = 1, 2, \dots, N$$
 (1)
Covariance: $\mathbf{P}_{k}^{f} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right) \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right)^{T}$ (2)

1. Preliminaries

• Prior distribution $p(\mathbf{x}_k | \mathbf{x}_{k-1}, \mathbf{Y}_{k-1}) \sim \mathcal{N}(\mathbf{x}_k^f, \mathbf{P}_k^f)$

Mean:
$$\mathbf{x}_{k}^{f} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{k}^{f,i}, \quad i = 1, 2, \dots, N$$
 (1)
Covariance: $\mathbf{P}_{k}^{f} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right) \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right)^{T}$ (2)

- The ensemble Kalman filter (EnKF) provides reliable background error covariances for large ensemble sizes
- (For now) we can't afford large ensembles especially in earth systems
- The use of small ensembles
 - causes the EnKF to be rank-deficient,
 - $\,\triangleright\,$ background variances are underestimated, and
 - generally results in low-quality forecasts

Covariance Rank: 100

• Holy Covariance: $\mathbf{B} = \lim_{N \to \infty} \mathbf{P}^e$

Covariance Rank: 100

- Holy Covariance: $\mathbf{B} = \lim_{N \to \infty} \mathbf{P}^e$
- Ways to fix/improve P^e
 - 1. Inflation: increases the variance, rank stays unchanged (spatially-const)
 - \rightarrow Multiplicative (prior, posterior), Additive, Relaxation
 - 2. Localization: removes spurious correlations, increases the rank \rightarrow Covariance, local analysis
 - 3. Mutli-configuration physics ensemble

2.1 Hybrid EnKF-OI: Terminologies

- OI: Optimal Interpolation (essentially a KF with a prescribed invariant **P**^f)
- Often referred to as EnKF-3DVar
- Initial effort by Hamill and Snyder (2000)

2.1 Hybrid EnKF-OI: Terminologies

- OI: Optimal Interpolation (essentially a KF with a prescribed invariant **P**^f)
- Often referred to as EnKF-3DVar
- Initial effort by Hamill and Snyder (2000)

What's the idea?

Use a background covariance in the EnKF that is an "average" (weighted sum) of a flow-dependent background error covariance estimated from an ensemble and a predefined static covariance from a 3DVar or an OI system

2.1 Hybrid EnKF-OI: Terminologies

- OI: Optimal Interpolation (essentially a KF with a prescribed invariant **P**^f)
- Often referred to as EnKF-3DVar
- Initial effort by Hamill and Snyder (2000)

What's the idea?

Use a background covariance in the EnKF that is an "average" (weighted sum) of a flow-dependent background error covariance estimated from an ensemble and a predefined static covariance from a 3DVar or an OI system

- Many different hybrid forms in the literature
- · Here, we adopt the following covariance-hybridizing form

$$\mathbf{P} = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

- Available from 3DVar systems
- Formed using large inventory of historical forecasts over large windows

- Available from 3DVar systems
- Formed using large inventory of historical forecasts over large windows

• Spectral decomposition is desirable

$$\mathbf{B} = \mathbf{S}\mathbf{\Omega}\mathbf{S}^{\mathsf{T}} = \widehat{\mathbf{S}}\widehat{\mathbf{S}}^{\mathsf{T}},\tag{3}$$

where $\widehat{\boldsymbol{\mathsf{S}}}=\boldsymbol{\mathsf{S}}\boldsymbol{\Omega}^{\frac{1}{2}}.$

- Available from 3DVar systems
- Formed using large inventory of historical forecasts over large windows
- Spectral decomposition is desirable

$$\mathbf{B} = \mathbf{S}\mathbf{\Omega}\mathbf{S}^{\mathsf{T}} = \widehat{\mathbf{S}}\widehat{\mathbf{S}}^{\mathsf{T}},\tag{3}$$

where $\widehat{\boldsymbol{\mathsf{S}}}=\boldsymbol{\mathsf{S}}\boldsymbol{\Omega}^{\frac{1}{2}}.$

• Succession of transform operators, ${\bf B} = {\bf B}^{1/2} {\bf B}^{T/2}$

$$\mathbf{B}^{1/2} = \mathbf{U}_{p} \mathbf{S} \mathbf{U}_{v} \mathbf{U}_{h} \tag{4}$$

- Available from 3DVar systems
- Formed using large inventory of historical forecasts over large windows
- Spectral decomposition is desirable

$$\mathbf{B} = \mathbf{S}\mathbf{\Omega}\mathbf{S}^{\mathsf{T}} = \widehat{\mathbf{S}}\widehat{\mathbf{S}}^{\mathsf{T}},\tag{3}$$

where $\widehat{\boldsymbol{\mathsf{S}}}=\boldsymbol{\mathsf{S}}\boldsymbol{\Omega}^{\frac{1}{2}}.$

• Succession of transform operators, ${\bf B} = {\bf B}^{1/2} {\bf B}^{{\cal T}/2}$

$$\mathbf{B}^{1/2} = \mathbf{U}_{p} \mathbf{S} \mathbf{U}_{v} \mathbf{U}_{h} \tag{4}$$

• Storage issue: **B** is of size $(N_x \times N_x)$ where N_x is the dimension of the state

- Available from 3DVar systems
- Formed using large inventory of historical forecasts over large windows
- Spectral decomposition is desirable

$$\mathbf{B} = \mathbf{S}\mathbf{\Omega}\mathbf{S}^{\mathsf{T}} = \widehat{\mathbf{S}}\widehat{\mathbf{S}}^{\mathsf{T}},\tag{3}$$

where $\widehat{\boldsymbol{\mathsf{S}}}=\boldsymbol{\mathsf{S}}\boldsymbol{\Omega}^{\frac{1}{2}}.$

• Succession of transform operators, ${\bf B} = {\bf B}^{1/2} {\bf B}^{{\cal T}/2}$

$$\mathbf{B}^{1/2} = \mathbf{U}_{p} \mathbf{S} \mathbf{U}_{v} \mathbf{U}_{h} \tag{4}$$

- Storage issue: **B** is of size $(N_x \times N_x)$ where N_x is the dimension of the state
 - The proposed adaptive scheme only requires knowledge of the historical (climatology) realizations and not the full B!

2.3 Hybrid EnKF-OI: Adaptive Form

How to choose α ?

2.3 Hybrid EnKF-OI: Adaptive Form

How to choose α ?

• The ensemble statistics should satisfy:

$$\mathbb{E}\left[\mathsf{d}\mathsf{d}^{\mathsf{T}}\right] = \mathsf{R} + \mathsf{H}\mathsf{P}^{\mathsf{f}}\mathsf{H}^{\mathsf{T}},\tag{5}$$

where $\mathbf{d} = \mathbf{y}^o - \mathbf{H}\mathbf{x}^f$. Substitute the hybrid covariance form in eq. (5):

$$\mathbb{E}\left[\mathsf{d}\mathsf{d}^{\mathsf{T}}\right] = \mathsf{R} + \alpha \mathsf{H}\mathsf{P}^{\mathsf{e}}\mathsf{H}^{\mathsf{T}} + (1-\alpha)\mathsf{H}\mathsf{B}\mathsf{H}^{\mathsf{T}},\tag{6}$$

 α is a scalar coefficient.

2.3 Hybrid EnKF-OI: Adaptive Form

How to choose α ?

• The ensemble statistics should satisfy:

$$\mathbb{E}\left[\mathsf{d}\mathsf{d}^{\mathsf{T}}\right] = \mathsf{R} + \mathsf{H}\mathsf{P}^{\mathsf{f}}\mathsf{H}^{\mathsf{T}},\tag{5}$$

where $\mathbf{d} = \mathbf{y}^o - \mathbf{H}\mathbf{x}^f$. Substitute the hybrid covariance form in eq. (5):

$$\mathbb{E}\left[\mathsf{dd}^{T}\right] = \mathbf{R} + \alpha \mathbf{H} \mathbf{P}^{e} \mathbf{H}^{T} + (1 - \alpha) \mathbf{H} \mathbf{B} \mathbf{H}^{T}, \tag{6}$$

 α is a scalar coefficient.

• Algorithm:

- $\triangleright~$ Assume α to be a random variable
- ▷ Start with a prior distribution for α : $p(\alpha) \sim \mathcal{N}, \mathcal{B}, ...$
- ▷ Use the data to construct a likelihood function: $p(\mathbf{d}|\alpha)$
- \triangleright Use Bayes' rule to find an updated estimate of α :

$$p(\alpha|\mathbf{d}) \approx p(\alpha) \cdot p(\mathbf{d}|\alpha)$$
 (7)

 $\triangleright\,$ Posterior α can be used as the prior for the next DA cycle

2.4 Hybrid EnKF-OI: Illustration

Purplish: More weight on ensemble covariance Brownish: More weight on static covariance

Understanding the behavior of the algorithm

- When both variances match, equal weight is placed (i.e., lpha= 0.5)
- Large bias: more weight on the larger variance to better fit the obs
- <u>Small bias</u>: good estimate; more weight on the smaller variance
- Moderate bias: alternate between the ensemble and the static variance

Purplish: More weight on ensemble covariance Brownish: More weight on static covariance

2.5 Hybrid EnKF-OI: Adaptive in space

- State variables may be hybridized differently, why?
 - Biases are not homogenous in space
 - Heterogenous observation networks (densely observed regions tend to have small ensemble spread)

2.5 Hybrid EnKF-OI: Adaptive in space

- State variables may be hybridized differently, why?
 - Biases are not homogenous in space
 - Heterogenous observation networks (densely observed regions tend to have small ensemble spread)
- Need to assimilate observations serially. For each observation:
 - \triangleright Compute correlation coefficient between the observed prior ensemble, y^{f} , and all state variables:

$$\rho_j = \operatorname{correlation}\left(y^f, x_j^f\right),$$

where the hybrid weighting factor is assumed to have the same correlation field (Anderson 2009, El Gharamti 2018). Thus,

$$d^2 = \sigma_o^2 + \rho_j \alpha \sigma_e^2 + (1 - \rho_j \alpha) \sigma_s^2$$

▷ Find the posterior based on the modified likelihood and associated prior

- L96: 40 variables
- Observe every other variable (total of 20)
- Observe every 5 time steps (dt = 0.05)
- **R** = 1
- **B** Climatological run (1000 realizations)
- No inflation
- No localization
- $p(\alpha) \sim \mathcal{N}(0.5, 0.1)$

Ensemble Sensitivity 3.5 2.5 -- EnKF Prior and Posterior RMSE -- EnKF-OI. $\alpha = 0.5$ -AC-EnKF-OI -AV-EnKF-OI 59 20 30 40 50 60 70 100 120 140 160 200 80 180 Ensemble Size

10/14

1. EnKF

- 2. **EnOI**: EnKF with fixed **B** (Hybrid; $\alpha = 0$)
- **3**. **EnKF-OI**; $\alpha = 0.5$
- AC-EnKF-OI: Adaptive spatially-Constant EnKF-OI
- 5. AV-EnKF-OI: Adaptive spatially-Varying EnKF-OI

- AC-EnKF-OI: Dashed lines
- AV-EnKF-OI: Solid lines

59

20 30 40 50 60 70

80 100 120 140 160 180 200

Ensemble Size

- AC-EnKF-OI: Dashed lines
- AV-EnKF-OI: Solid lines

- Weighting Factor N: 20-— N: 80 — N: 200 0.6 0.4 0.3 5 10 15 20 25 30 35 State Variable 0.8 AC-EnKE-OI AV-EnKF-OI 0.2
- For small ensembles, both adaptive spatially-constant and varying schemes behave the same
- Being spatially-varying, AV-EnKF-OI responds more efficiently to changes in the ensemble

3.2 Experiments using L96: Model Error & Inflation

- Ensemble size: 20
- Model error; vary 3 ≤ F ≤ 13
- B is generated in each case using biased F
- No localization

1 0.9 1.01 0.8 1.02 0.7 1.04 1.08 0.6 0.5 1.15 0.4 0.3 1.2 0.2 1.5 0.1 2 з 4 5 6 7 8 9 10 11 12 13 Forcing (F)

Hybrid Weighting Factor

3.2 Experiments using L96: Model Error & Inflation

- Ensemble size: 20
- Model error; vary 3 ≤ F ≤ 13
- B is generated in each case using biased F
- No localization

 As inflation increases, adaptive α increases (more weight on the ensemble cov)

Hybrid Weighting Factor

• $N_e = 20$, No inflation

- Vary both F and localization length scale
- Adaptive hybrid scheme is systematically better than the EnKF for all tested cases

- For chaotic behaviour (i.e., $F \ge 8$): As localization increases, α increases
- Less chaotic (smaller ensemble variance): α decreases to *bring-in* variability from **B**
- Left panel: $\frac{\text{Ensemble Spread}}{\text{Hybrid Spread}}$, note the small spread in the ensemble for F < 8

3.4 Experiments using L96: Observation Network

- Data Void I: Observe the first 20 variables
- Data Void II: Observe the first and last 5 variables
- Data Void III: Observe 10 variables in the center
- Data Void IV: Observe 5 variables in the center

3.4 Experiments using L96: Observation Network

- Data Void I: Observe the first 20 variables
- Data Void II: Observe the first and last 5 variables
- Data Void III: Observe 10 variables in the center
- Data Void IV: Observe 5 variables in the center

• In densely observed regions, the ensemble spread decreases. To counteract this, hybrid scheme places more on ${\bf B}$ to increase the variance and allow the filter to better fit the data

- Presented a new temporally and spatially varying adaptive hybrid EnKF-OI scheme
- The adaptive scheme uses the data and applies Bayes rule to determine the relative weighting between the ensemble and the static covariance
- The spatially-adaptive scheme for now does not support data that are not on the state grid (e.g., radiances)
- Tests using the Lorenz-96 system
- Future tests in high-order models (B-grid, CAM, WRF-Hydro ..)

- Presented a new temporally and spatially varying adaptive hybrid EnKF-OI scheme
- The adaptive scheme uses the data and applies Bayes rule to determine the relative weighting between the ensemble and the static covariance
- The spatially-adaptive scheme for now does not support data that are not on the state grid (e.g., radiances)
- Tests using the Lorenz-96 system
- Future tests in high-order models (B-grid, CAM, WRF-Hydro ..)

EnKF	Adaptive Hybrid EnKF-OI

- Only flow-dependent covariance - OI flavor and flow-dependent information

- Presented a new temporally and spatially varying adaptive hybrid EnKF-OI scheme
- The adaptive scheme uses the data and applies Bayes rule to determine the relative weighting between the ensemble and the static covariance
- The spatially-adaptive scheme for now does not support data that are not on the state grid (e.g., radiances)
- Tests using the Lorenz-96 system
- Future tests in high-order models (B-grid, CAM, WRF-Hydro ..)

EnKF	Adaptive Hybrid EnKF-OI
– Only flow-dependent covariance	- OI flavor and flow-dependent information
– Requires a large ensemble size	 Works well with fairly small ensembles

- Presented a new temporally and spatially varying adaptive hybrid EnKF-OI scheme
- The adaptive scheme uses the data and applies Bayes rule to determine the relative weighting between the ensemble and the static covariance
- The spatially-adaptive scheme for now does not support data that are not on the state grid (e.g., radiances)
- Tests using the Lorenz-96 system
- Future tests in high-order models (B-grid, CAM, WRF-Hydro ..)

EnKF	Adaptive Hybrid EnKF-OI
– Only flow-dependent covariance – Requires a large ensemble size – Fair computational cost	 OI flavor and flow-dependent information Works well with fairly small ensembles Storage, additional IO cost

- Presented a new temporally and spatially varying adaptive hybrid EnKF-OI scheme
- The adaptive scheme uses the data and applies Bayes rule to determine the relative weighting between the ensemble and the static covariance
- The spatially-adaptive scheme for now does not support data that are not on the state grid (e.g., radiances)
- Tests using the Lorenz-96 system
- Future tests in high-order models (B-grid, CAM, WRF-Hydro ..)

EnKF	Adaptive Hybrid EnKF-OI
 Only flow-dependent covariance Requires a large ensemble size Fair computational cost Strong tuning (inf, loc,) 	 OI flavor and flow-dependent information Works well with fairly small ensembles Storage, additional IO cost Fully adaptive, requires less inf, loc,

- Presented a new temporally and spatially varying adaptive hybrid EnKF-OI scheme
- The adaptive scheme uses the data and applies Bayes rule to determine the relative weighting between the ensemble and the static covariance
- The spatially-adaptive scheme for now does not support data that are not on the state grid (e.g., radiances)
- Tests using the Lorenz-96 system
- Future tests in high-order models (B-grid, CAM, WRF-Hydro ..)

EnKF	Adaptive Hybrid EnKF-OI
 Only flow-dependent covariance Requires a large ensemble size Fair computational cost Strong tuning (inf, loc,) Strong biases cause divergence 	 OI flavor and flow-dependent information Works well with fairly small ensembles Storage, additional IO cost Fully adaptive, requires less inf, loc, More stable; able to switch to EnOI