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1. Preliminaries

• Prior distribution p (xk |xk−1,Yk−1) ∼ N
(
xfk ,P

f
k

)
Mean: xfk =

1

N

N∑
i=1

xf ,ik , i = 1, 2, . . . ,N (1)

Covariance: Pf
k =

1

N − 1

N∑
i=1

(
xf ,ik − xfk

)(
xf ,ik − xfk

)T
(2)

• The ensemble Kalman filter (EnKF) provides reliable background error
covariances for large ensemble sizes

• (For now) we can’t afford large ensembles especially in earth systems

• The use of small ensembles

. causes the EnKF to be rank-deficient,

. background variances are underestimated, and

. generally results in low-quality forecasts
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• Holy Covariance: B = lim
N→∞

Pe

• Ways to fix/improve Pe

1. Inflation: increases the variance, rank stays unchanged (spatially-const)
→ Multiplicative (prior, posterior), Additive, Relaxation

2. Localization: removes spurious correlations, increases the rank
→ Covariance, local analysis

3. Mutli-configuration|physics ensemble
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2.1 Hybrid EnKF-OI: Terminologies

• OI: Optimal Interpolation (essentially a KF with a prescribed invariant Pf )

• Often referred to as EnKF-3DVar

• Initial effort by Hamill and Snyder (2000)

What’s the idea?

Use a background covariance in the EnKF that is an “average” (weighted
sum) of a flow-dependent background error covariance estimated from an
ensemble and a predefined static covariance from a 3DVar or an OI system

• Many different hybrid forms in the literature

• Here, we adopt the following covariance-hybridizing form

P = αPe + (1− α)B
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2.2 How to construct B

• Available from 3DVar systems

• Formed using large inventory of historical forecasts over large windows

• Spectral decomposition is desirable

B = SΩST = ŜŜT , (3)

where Ŝ = SΩ
1
2 .

• Succession of transform operators, B = B1/2BT/2

B1/2 = UpSUvUh (4)

• Storage issue: B is of size (Nx × Nx) where Nx is the dimension of the state

• The proposed adaptive scheme only requires knowledge of the historical
(climatology) realizations and not the full B!
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where Ŝ = SΩ
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2.3 Hybrid EnKF-OI: Adaptive Form

How to choose α?

• The ensemble statistics should satisfy:

E
[
ddT

]
= R + HPf HT , (5)

where d = yo −Hxf . Substitute the hybrid covariance form in eq. (5):

E
[
ddT

]
= R + αHPeHT + (1− α)HBHT , (6)

α is a scalar coefficient.

• Algorithm:

. Assume α to be a random variable

. Start with a prior distribution for α: p(α) ∼ N ,B, ..

. Use the data to construct a likelihood function: p(d|α)

. Use Bayes’ rule to find an updated estimate of α:

p(α|d) ≈ p(α) · p(d|α) (7)

. Posterior α can be used as the prior for the next DA cycle
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2.4 Hybrid EnKF-OI: Illustration
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Scalar example:

Pe → σ2
e = 0.9

B→ σ2
s = 0.2

R→ σ2
o = 0.1

d→ d = 2.5
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Understanding the behavior of the algorithm

• When both variances match, equal weight is placed (i.e., α = 0.5)

• Large bias: more weight on the larger variance to better fit the obs

• Small bias: good estimate; more weight on the smaller variance

• Moderate bias: alternate between the ensemble and the static variance
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2.5 Hybrid EnKF-OI: Adaptive in space

• State variables may be hybridized differently, why?

. Biases are not homogenous in space

. Heterogenous observation networks (densely observed regions tend to have
small ensemble spread)

• Need to assimilate observations serially. For each observation:

. Compute correlation coefficient between the observed prior ensemble,
y f , and all state variables:

ρj = correlation
(
y f , x fj

)
,

where the hybrid weighting factor is assumed to have the same
correlation field (Anderson 2009, El Gharamti 2018). Thus,

d2 = σ2
o + ρjασ

2
e + (1− ρjα)σ2

s

. Find the posterior based on the modified likelihood and associated prior
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3.1 Experiments using L96: Ensemble Size
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• L96: 40 variables

• Observe every other
variable (total of 20)

• Observe every 5 time
steps (dt = 0.05)

• R = 1

• B Climatological run
(1000 realizations)

• No inflation

• No localization

• p(α) ∼ N (0.5, 0.1)

1. EnKF

2. EnOI: EnKF with fixed B
(Hybrid; α = 0)

3. EnKF-OI; α = 0.5

4. AC-EnKF-OI: Adaptive
spatially-Constant
EnKF-OI

5. AV-EnKF-OI: Adaptive
spatially-Varying EnKF-OI

• AC-EnKF-OI: Dashed lines

• AV-EnKF-OI: Solid lines

• For small ensembles, both
adaptive spatially-constant
and varying schemes behave
the same

• Being spatially-varying,
AV-EnKF-OI responds more
efficiently to changes in the
ensemble
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• AV-EnKF-OI: Solid lines

• For small ensembles, both
adaptive spatially-constant
and varying schemes behave
the same

• Being spatially-varying,
AV-EnKF-OI responds more
efficiently to changes in the
ensemble
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3.2 Experiments using L96: Model Error & Inflation
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• Hybrid scheme: better stability
and more accurate even in very
biased conditions

• As inflation increases, adaptive α
increases (more weight on the
ensemble cov)

• Ensemble size: 20

• Model error; vary
3 ≤ F ≤ 13

• B is generated in each
case using biased F

• No localization
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3.3 Experiments using L96: Model Error &
Localization
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• Ne = 20, No inflation

• Vary both F and localization length scale

• Adaptive hybrid scheme is systematically better than the EnKF for all tested cases

Average Ensemble Spread Ratio
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• For chaotic behaviour (i.e., F ≥ 8): As localization increases, α increases

• Less chaotic (smaller ensemble variance): α decreases to bring-in variability from B

• Left panel: Ensemble Spread
Hybrid Spread

, note the small spread in the ensemble for F < 8
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• Data Void I: Observe
the first 20 variables

• Data Void II: Observe
the first and last 5
variables

• Data Void III: Observe
10 variables in the
center

• Data Void IV: Observe
5 variables in the center
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• In densely observed regions, the ensemble spread decreases. To counteract this,
hybrid scheme places more on B to increase the variance and allow the filter to
better fit the data
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4. Conclusion

• Presented a new temporally and spatially varying adaptive hybrid EnKF-OI scheme

• The adaptive scheme uses the data and applies Bayes rule to determine the relative
weighting between the ensemble and the static covariance

• The spatially-adaptive scheme – for now – does not support data that are not on
the state grid (e.g., radiances)

• Tests using the Lorenz-96 system

• Future tests in high-order models (B-grid, CAM, WRF-Hydro ..)

EnKF Adaptive Hybrid EnKF-OI

– Only flow-dependent covariance – OI flavor and flow-dependent information
– Requires a large ensemble size – Works well with fairly small ensembles
– Fair computational cost – Storage, additional IO cost
– Strong tuning (inf, loc, ..) – Fully adaptive, requires less inf, loc, ..
– Strong biases cause divergence – More stable; able to switch to EnOI
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