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1.WRF-Hydro
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3.Hurricane Florence
4.DA results from an 80 member experiment
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Weather Research & Forecasting Hydrologic Model

2-way coupling

WRF-Hydro: https://www.ral.ucar.edu/projects/wrf_hydro
Weather Forcing Engine

NoahMP
Land Surface Model Terrain Routing Module

Channel & Reservoir
Routing Module

NHDPlus Catchment
Aggregation

Forecast
Products
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WRF-Hydro & DART  ….  HydroDART 
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What is Data Assimilation?

… to produce an analysis.

+

Observations combined with a Model forecast…

=

Overview article of the Data Assimilation Research Testbed (DART):

Anderson, Jeffrey, T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, A. Arellano, 2009: 
The Data Assimilation Research Testbed: A Community Facility.
Bull. Amer. Meteor. Soc., 90, 1283–1296. doi:10.1175/2009BAMS2618.1
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Ensemble DA in DART

*** *
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Hurricane Florence (2018)

30+” of rain

Hurricane Florence made landfall near 
Wrightsville Beach, North Carolina at 
7:15 a.m. ET September 14. The 
GOES East satellite captured this 
geocolor image at 7:45 a.m. ET

Winds up to 150 mph (240 km/hr)
Damage: $24.23 billion
NOAA/NWS/NCEP/WPC
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‘scale’ of Florence Domain

About 42 miles

Bald Head Island, NC to Cape Lookout, NC 28531 Walk 147 miles, 45 h
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Control: No Assimilation
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Monthly mean of 
the model. The 
streamflow is 
driven by the 
precipitation. 
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Now, what 
happens when 
streamflow gauge 
data is 
incorporated 
through DA? 

More than 100 
gauges, reporting 
every 15 mins.
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Data Assimilation Impact

Correction 
along major 
reaches. DA is 
adding water to 
the stream 
channels.
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Upstream Gauge
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STREAM_FLOW_066453 | Gauge ID: 2131000
Time-Series: Obs, Prior/Posterior Ensemble, Mean and Spread

Gauge Observations

Control

Prior members

Prior mean

Posterior members
Posterior mean

Large improvements 
to the amplitude 
and the phase 
compared to the 
control 

STREAM_FLOW_066453 | Gauge ID: 2131000
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Downstream Gauge

Sep 07 Sep 14 Sep 22 Sep 30 Oct 07
0

500

1000

1500

2000

2500

3000

3500

4000

4500

S
tr

e
a
m

 f
lo

w
 (

cm
s)

STREAM_FLOW_060373 | Gauge ID: 2126000
Time-Series: Obs, Prior/Posterior Ensemble, Mean and Spread

Sep 07 Sep 14 Sep 22 Sep 30 Oct 07
0

500

1000

1500

2000

2500

3000

3500

4000

4500

S
tr

e
a
m

 f
lo

w
 (

cm
s)

STREAM_FLOW_060373 | Gauge ID: 2126000
Time-Series: Obs, Prior/Posterior Ensemble, Mean and Spread

Sep 07 Sep 14 Sep 22 Sep 30 Oct 07
0

500

1000

1500

2000

2500

3000

3500

4000

4500

S
tr

e
a
m

 f
lo

w
 (

cm
s)

STREAM_FLOW_060373 | Gauge ID: 2126000
Time-Series: Obs, Prior/Posterior Ensemble, Mean and Spread

Sep 07 Sep 14 Sep 22 Sep 30 Oct 07
0

500

1000

1500

2000

2500

3000

3500

4000

4500

S
tr

e
a
m

 f
lo

w
 (

cm
s)

STREAM_FLOW_060373 | Gauge ID: 2126000
Time-Series: Obs, Prior/Posterior Ensemble, Mean and Spread

Prior greatly improves 
the model’s estimate

Posteriors provide 
almost a perfect match 
with the gauge 
streamflow data 

Difference 
between knowing 

what to do (like 
evacuating 

people) and not 
doing anything!
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Improvements: control->prior->posterior
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Significant Technical Enhancements

1. Inflation: As a way to increase ensemble 
uncertainty, adaptive both in space and time

2. Pattern-based (Along-the-stream) 
localization: To minimize sampling errors

3. Gaussian Anamorphosis: Variable transform 
to accommodate positive definite variables 
(with non-Gaussian distributions)
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Adaptive Inflation

-80.5 -80 -79.5 -79 -78.5 -78 -77.5 -77 -76.5

Longitude

3
3

.6
6

3
4

.4
5

3
5

.2
4

3
6

.0
3

3
6

.8
2

L
a

tit
u

d
e

  1.00 

  1.257

  1.487

  1.743

  1.949

  2.216

  2.566

  2.835
Inflation Factor

Inflation aims at making 
the model consistent 
with observations

Ensemble and 
observations are 
consistent
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More than 50,000 links, more than 100 gages

Exploded view
to show detail

Florence Domain: localization

Localization occurs 
along the reaches, not 
just based on horizontal 
distance. Upstream & 
Downstream.

100 km localization distance is used
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Gaussian Anamorphosis Capability
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Open Loop, RMSE: 11.15

Prior Mean, RMSE: 5.38

Posterior Mean, RMSE: 1.97

Average Kurtosis
      Prior: 0.41
  Posterior: 0.40
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      Prior: 0.02
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Observation rejection is 
improved with GA. 

Better fit to the observations 
on Sep. 17th. 

Higher order moments are 
almost completely eliminated 
using GA.  

Control,

Control,
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Conclusion

We use DART to perform streamflow and flood prediction with WRF-
Hydro (NWM) during Hurricane Florence.

DART greatly improved the streamflow estimates

Novel enhancements to the DA algorithm were required:
- Using pattern-based localization 
- Spatially and temporally varying inflation
- Gaussian anamorphosis

Next Steps: Update soil moisture, groundwater and ice; force the 
coupled system with an ensemble of atmospheric forcing, …
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For more information:

https://dart.ucar.edu
dart@ucar.edu
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NATIONAL WATER MODEL (NWM)

https://water.noaa.gov/about/nwm
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Topography of North Carolina

Moore, et al. Southeastern 
Geology 51(4):145- 171, 
March 2016
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Dorian (aside)
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Gaussian -> NonGaussian positive 

From: Penn State Stats 400 level online course.
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