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DA BACKGROUND



Data Assimilation: A brief background

# Data Assimilation (DA) is process of combining a model’s
prediction of a state (e.g., SST, Pressure) with observations to
obtain an improved estimate of the state and its uncertainty

# Probabilistic approach through Bayes’ rule:

p (x|y) ≈ p (y|x) · p (x)

# Ensemble Kalman Filter (EnKF)

◦ Large-scale systems
◦ Nonlinear regimes
◦ Easy to implement
◦ Relatively cheap

# Other DA forms/tools exist
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DART: Data Assimilation Research Testbed

# In-house community facility for ensemble DA; developed
and maintained by my team (DAReS) in CISL

◦ Framework
◦ Flexible, portable, well-tested, extensible, free!
◦ Source code distributed on Github: NCAR/DART
◦ Models: Toy to HUGE, including CESM
◦ Observations: Real, synthetic, novel

◦ Research
◦ Theory based, widely applicable techniques
◦ Adaptive inflation, Localization, ...

◦ Teaching
◦ Extensive tutorial materials and exercises

# At least 48 UCAR member universities & > 100 other sites

# Encourages funded collaborations with
external organizations

3 / 10

MITgcm_ocean NAAPS

NCOMMAS

PBL_1d

POP

AM2

BGRID

CAM

CLM

COAMPS

COAMPS_NEST

MPAS_OCN

MPAS_ATM
NOAH

PE2LYR

SQG
WRF

TIEGCM

GITM

GCCOM

WRF-Hydro

ROMS

CABLE

WACCM-X CAM-Chem
WRF-Chem

FESOM

CM1

LMDZ

CICE

PFLOTRAN

GCOM

https://github.com/NCAR/DART


DART: Data Assimilation Research Testbed

# In-house community facility for ensemble DA; developed
and maintained by my team (DAReS) in CISL

◦ Framework
◦ Flexible, portable, well-tested, extensible, free!
◦ Source code distributed on Github: NCAR/DART
◦ Models: Toy to HUGE, including CESM
◦ Observations: Real, synthetic, novel

◦ Research
◦ Theory based, widely applicable techniques
◦ Adaptive inflation, Localization, ...

◦ Teaching
◦ Extensive tutorial materials and exercises

# At least 48 UCAR member universities & > 100 other sites

# Encourages funded collaborations with
external organizations

3 / 10

MITgcm_ocean NAAPS

NCOMMAS

PBL_1d

POP

AM2

BGRID

CAM

CLM

COAMPS

COAMPS_NEST

MPAS_OCN

MPAS_ATM
NOAH

PE2LYR

SQG
WRF

TIEGCM

GITM

GCCOM

WRF-Hydro

ROMS

CABLE

WACCM-X CAM-Chem
WRF-Chem

FESOM

CM1

LMDZ

CICE

PFLOTRAN

GCOM

https://github.com/NCAR/DART


DART: Data Assimilation Research Testbed

# In-house community facility for ensemble DA; developed
and maintained by my team (DAReS) in CISL

◦ Framework
◦ Flexible, portable, well-tested, extensible, free!
◦ Source code distributed on Github: NCAR/DART
◦ Models: Toy to HUGE, including CESM
◦ Observations: Real, synthetic, novel

◦ Research
◦ Theory based, widely applicable techniques
◦ Adaptive inflation, Localization, ...

◦ Teaching
◦ Extensive tutorial materials and exercises

# At least 48 UCAR member universities & > 100 other sites

# Encourages funded collaborations with
external organizations

3 / 10

MITgcm_ocean NAAPS

NCOMMAS

PBL_1d

POP

AM2

BGRID

CAM

CLM

COAMPS

COAMPS_NEST

MPAS_OCN

MPAS_ATM
NOAH

PE2LYR

SQG
WRF

TIEGCM

GITM

GCCOM

WRF-Hydro

ROMS

CABLE

WACCM-X CAM-Chem
WRF-Chem

FESOM

CM1

LMDZ

CICE

PFLOTRAN

GCOM

https://github.com/NCAR/DART


RESEARCH SUPPORTING HIGH-
IMPACT APPLICATIONS



Predicting Floods using National Water Model

# Collaborative effort between RAL and CISL

# Interface DART and WRF-Hydro to enhance flood prediction in the
Carloinas during Hurricane Florence, 2018
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Novel DA Techniques

# High quality streamflow prediction required advancing our DA
research; in particular we developed:

◦ Spatially and temporally adaptive inflation: to counter model biases

◦ Along-The-Stream Localization: to mitigate sampling errors
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The Red Sea Initiative: Framework

# An exciting project with external collaborators (KAUST, SIO)

# Advance coupled DA science and apply knowledge to NCAR
community models
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red_sea_all.mp4
Media File (video/mp4)



The Red Sea Initiative: Computing
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Cray XC40: 7.2 Pflop/s
6.5K dual-socket compute nodes
200K processor cores


red-sea.mp4
Media File (video/mp4)


circ.mp4
Media File (video/mp4)



The Red Sea Initiative: Uncertainty Assessment
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movie_Viz_ucnertainty.mp4
Media File (video/mp4)



Summary

# Advance data assimilation science by providing novel solutions
to challenging earth system modeling problems

# Improve model predictions particularly in extreme events (such
as hurricanes) given the high impact on human life

# Thrive by collaborating with bright scientists and groups within
and outside NCAR
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Learn more about DART here: dart.ucar.edu

Thank You!
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