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DA BACKGROUND




Data Assimilation: A brief background

O Data Assimilation (DA) is process of combining a model’s
prediction of a state (e.g., SST, Pressure) with observations to
obtain an improved estimate of the state and its uncertainty
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DART: Data Assimilation Research Testbed

O In-house community facility for ensemble DA; developed
and maintained by my team (DAReS) in CISL

o Framework

Flexible, portable, well-tested, extensible, free!
Source code distributed on Github: NCAR/DART
Models: Toy to HUGE, including CESM
Observations: Real, synthetic, novel

o Research

O O O O

CAM FESOM GITM WRF
CICE WRF-Hydro pop BGRID SQG
CLM WACCM-X CAM-Chem NOAH | MDZ
GCCOM  WRF-Chem MPAS_ATM NCOMMAS
AMZ COAMPS MPAS_OCN ROMS

o Theory based, widely applicable techniques
o Adaptive inflation, Localization, ...

o Teaching

MITgem_ocean  rreGem NAAPS
CABLE PFLOTRAN
i oy PBL_Id

COAMPS_NEST

o Extensive tutorial materials and exercises
O At least 48 UCAR member universities & > 100 other sites

O Encourages funded collaborations with
external organizations
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RESEARCH SUPPORTING HIGH-
IMPACT APPLICATIONS




Predicting Floods using National Water Model

O Collaborative effort between RAL and CISL

O Interface DART and WRF-Hydro to enhance flood prediction in the
Carloinas during Hurricane Florence, 2018
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Predicting Floods using National Water Model

Latitude

O Collaborative effort between RAL and CISL

O Interface DART and WRF-Hydro to enhance flood prediction in the
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Predicting Floods using National Water Model

O Collaborative effort between RAL and CISL

O Interface DART and WRF-Hydro to enhance flood prediction in the
Carloinas during Hurricane Florence, 2018

Hydrograph: Rocky River near Norwood, SC
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Predicting Floods using National Water Model
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Predicting Floods using National Water Model
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Predicting Floods using National Water Model
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Predicting Floods using National Water Model

O Collaborative effort between RAL and CISL
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Novel DA Techniques

O High quality streamflow prediction required advancing our DA
research; in particular we developed:
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Novel DA Techniques

O High quality streamflow prediction required advancing our DA
research; in particular we developed:

o Spatially and temporally adaptive inflation: to counter model biases

o Along-The-Stream Localization: to mitigate sampling errors
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The Red Sea Initiative: Framework

O An exciting project with external collaborators (KAUST, SIO)

O Advance coupled DA science and apply knowledge to NCAR
community models

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

%’)}), KAUST

SCRIPPS iwsrirurion of
OCEANOGRAPHY
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red_sea_all.mp4
Media File (video/mp4)


The Red Sea Initiative: Computing

Cray XCyo: 7.2 Pflop/s
6.5K dual-socket compute nodes
200K processor cores

-

8/10



red-sea.mp4
Media File (video/mp4)


circ.mp4
Media File (video/mp4)


The Red Sea Initiative: Uncertainty Assessment
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movie_Viz_ucnertainty.mp4
Media File (video/mp4)


O Advance data assimilation science by providing novel solutions
to challenging earth system modeling problems

O Improve model predictions particularly in extreme events (such
as hurricanes) given the high impact on human life

O Thrive by collaborating with bright scientists and groups within
and outside NCAR
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O Advance data assimilation science by providing novel solutions
to challenging earth system modeling problems

O Improve model predictions particularly in extreme events (such
as hurricanes) given the high impact on human life

O Thrive by collaborating with bright scientists and groups within
and outside NCAR

Learn more about DART here: dart.ucar.(_edu

Thank You!
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