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MOTIVATION



Hurricane Florence

# Tropical wave tropical storm Category 4 Hurricane

# Landfall on Sep. 14 (Carolinas) with winds up to 150 mph
# Catastrophic damages to coastal communities [$25 billion]
# Flooding magnitude greatly exceeded the levels observed due to

Hurricane Matthew in 2016
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Hurricane Florence cont.

# The goal is to interface the Data Assimilation Research Testbed
(DART; Anderson, 2003) with WRF-Hydro (NOAA’s NWM; Gochis,
2020) to enhance flood prediction during Hurricane Florence
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� Regional subdomain of
the NWM CONUS

� NWM channel network
based on NHDPlus v.2

� ∼ 67K reaches
� Hourly streamflow

assimilation
� 107 USGS gauges
� EAKF: 80 members



THE COUPLED HYDROLOGIC-
ASSIMILATION FRAMEWORK



The Hydrologic Model

Channel + Bucket Configuration:
⊲ Streamflow Model: Muskingum-Cunge hydrograph routing
⊲ Groundwater Bucket Model: Mitigate baseflow deficincies
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Forcing and Ensemble Uncertainty

# Apply Gaussian perturbations to the boundary fluxes to the
streamflow and bucket models every hourly forecast step

# To create realistic model variability, we follow a "multi-physics"
approach (Berner et al., 2011) and perturb the channel parameters:

1. top width, )
2. bottom width, �
3. side slope, <

4. Manning’s N, =
5. width of compound channel, )22
6. Manning’s N of compound channel, =22

Sampling uniformly under some physical constraints!

6 / 12



Forcing and Ensemble Uncertainty

# Apply Gaussian perturbations to the boundary fluxes to the
streamflow and bucket models every hourly forecast step

# To create realistic model variability, we follow a "multi-physics"
approach (Berner et al., 2011) and perturb the channel parameters:

1. top width, )
2. bottom width, �
3. side slope, <

4. Manning’s N, =
5. width of compound channel, )22
6. Manning’s N of compound channel, =22

Sampling uniformly under some physical constraints!

6 / 12

Tcc

T

B

m

ncc

n



DART: The Data Assimilation Research Testbed

# Serial DA scheme: process observations one after the other
# State: [1] Streamflow & [2] groundwater bucket at every reach

How to mitigate typical filtering issues?

i. Sampling Errors: due to limited ensemble size

x0(8)
9 ,:

= x 5 (8)
9 ,:
+ Δx(8)

9
; 9 , :, 8 : {space, time, ensemble}

→ Along-The-Stream (ATS) Localization [0 <  < 1]
ii. Model Biases: e.g., physical parameters, boundary conditions, ...

x 5 |0(8)
9

=
√
�
(
x 5 |0(8)
9
− x 5 |0

9

)
+ x 5 |0

9
; 5 |0 : {forecast or analysis}

→ Spatially and Temporally Varying Adaptive Inflation [
√
� ≥ 1]
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Along-The-Stream (ATS) Localization

ATS localization aims to mitigate not only spurious correlations, due
to limited ensemble size, but also physically incorrect correlations
between unconnected state variables in the river network
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� best performance using 100 km

� larger radii give rise to spurious
correlations and smaller ones limit
the amount of useful information

� G-C outperforms other correlation
functions



ATS vs Regular Localization
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ATS Reg 20 Reg 10 Reg 5 Reg 2 Reg 1

Ta
rR

iv
er

at
Ta

rb
or
o

(N
W

IS
02

08
35

00
) Prior RMSE 5.58 18.54 8.86 33.46 41.61 34.32

Posterior RMSE 4.93 17.82 6.75 25.11 33.66 26.41

Prior Bias -1.13 -11.65 -1.71 -20.24 -18.09 -11.07

Posterior Bias -0.85 -11.41 -0.74 -20.37 -17.16 -10.01
Prior Spread 1.20 3.29 2.80 10.90 10.84 9.54
Posterior Spread 1.55 3.00 2.27 6.28 6.43 5.17

# Performance using ATS localization is significantly better (∼ 40%)
# Using ATS, one can increase the effective localization radius
# Regular localization with large radii fails (correlating physically

unrelated variables)



Adaptive Covariance Inflation

The algorithm is adaptive in time, based on Bayes’ theorem,
and results in spatially varying fields (El Gharamti, 2018):
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Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
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Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
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A sizable increase in prior
inflation to counter the bias
in the modeled streamflow!
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The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

Pee Dee River near Bennettsville, SC (NWIS 021305561)
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The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

Pee Dee River near Bennettsville, SC (NWIS 021305561)
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The probability of the observation to fall outside the
open loop ensemble is > 50%

The observed discharge statistically indistinguishable
from the prior ensemble



Summary

# NOAA’s National Water Model configuration of theWRF-Hydro
framework is coupled to the Data Assimilation Research Testbed
(DART) to improve ensemble streamflow forecasts under extreme
rainfall conditions during Hurricane Florence in Sep. 2018

# To address sampling errors, Along-The-Stream (ATS)
Localization is proposed. The algorithm provides improved
information propagation in the stream network

# Adaptive Inflation is extremely useful and is able to serve as a
vigorous bias correction scheme which varies both spatially and
temporally
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https://dart.ucar.edu/

Thank You!
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