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A FORECAST MODEL; (stochastic) Difference Equation:

FORWARD OPERATORS: Relates model to observations:

Complete history of observations is: 

Goal: Find probability distribution for state: 

Analysis Forecast

A General Description of the Forecast Problem 

dxt = f xt ,t( ) +G xt ,t( )dβt , t ≥ 0

yk = h xk ,tk( ) + vk; k = 1,2,...; tk+1 > tk ≥ t0

Yτ = yl;tl ≤ τ{ }

p x,t |Yt( ) p x,t + |Yt( )
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A General Description of the Forecast Problem 

DATA ASSIMILATION: Observations impact model:

Prior (model forecast)
Likelihood (Obs. Error)

(10)

Posterior (analysis).
Denominator just normalization.

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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Assumes:
linear model Gaussian noise

Gaussian state 

linear forward operator,

Gaussian observation error

Solving the Forecast Problem: The Kalman Filter

dxt = f xt ,t( ) +G xt ,t( )dβt , t ≥ 0

yk = h xk ,tk( ) + vk; k = 1,2,...; tk+1 > tk ≥ t0
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Covariance:

Mean: 

∑ = (∑1
−1+∑2

−1)−1

µ =∑(∑1
−1µ1 +∑2

−1µ2 )

Kalman Filter: Product of Two Gaussians

Product of d-dimensional normals with means and and

covariance matrices      and is normal.

µ1 µ2
∑1 ∑2

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)
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The Kalman Filter

Numerator is just product of two gaussians.

Denominator just normalizes posterior to be a PDF.

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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The Kalman Filter

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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The Kalman Filter

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
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The Kalman Filter

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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The Ensemble Kalman Filter
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1. Start with ensemble of forecasts.



The Ensemble Kalman Filter
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2. Fit a normal to ensemble.



The Ensemble Kalman Filter
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3. Do standard Kalman filter.



The Ensemble Kalman Filter
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Have continuous posterior; need an ensemble.



The Ensemble Kalman Filter
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4. Can create an ensemble with exact sample mean 
and covariance of continuous posterior.
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1. Assimilation of RO Data for Mass Density Estimation
PIs: Tomoko Matsuo, Chih-Ting Hsu, Nick Dietrich
Model: TIEGCM

2. Assimilation of Ground- and Space-Based Ionosphere Obs.
PIs: Nick Pedatella et al.
Model: WACCM-X

3. Observing Tsunamis via the Ionosphere
PIs: Panagiotis, Xing Meng, Attila Komjathy
Model: WP-GITM

4. Estimating the Solar Meridional Circulation Speed
PIs: Mausumi Dikpati and Dhrubaditya Mitra
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HIGH ALTITUDE OBSERVATORY

Observations Assimilated in WACCM(X)+DART

Conventional Lower Atmosphere Observations:
Aircraft temperature and wind
Radiosonde temperature and wind
Satellite drift winds
COSMIC GPS RO refractivity

Sparse Middle/Upper Atmosphere Observations:
TIMED/SABER Temperature (100 - 5×10-4 hPa)
Aura MLS Temperature (260 - 1×10-3 hPa)

Ionosphere Observations
COSMIC GNSS RO electron density profiles
Ground-based GNSS total electron content (TEC) 0
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HIGH ALTITUDE OBSERVATORY

Assimilation of ionosphere observations is effective in removing the 
bias that exists in WACCMX+DART relative to the truth simulation 

Synthetic Observations

No Iono. Assim Iono. Assim (O+) Iono. Assim (O+, O, O2, T)
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Tsunamis make very small changes to sea surface height in open ocean.
But, waves amplify in the atmosphere, 100m plus amplitude in ionosphere.
Changes Total Electron Content (TEC) of Ionosphere.
GPS signals are slowed by electrons. 
Delays at ground stations can detect tsunami impacts in ionosphere (no way)!
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Tohoku example: Gravity waves in ionosphere over tsunami waves in ocean.

Use DART to find tsunami amplitude by assimilating GPS observations of TEC.
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What can DART DA do for earth system applications?

• Initial conditions for predictions,
• Produce reanalyses to help increase understanding,
• Confront models with observations, find inconsistencies

(but almost never gives direct path to improving model),
• Parameter estimation for model ‘tuning’.

Ensemble methods can provide information about uncertainty 
(and other aspects of distributions) for all of these.

Reconstruction of the Sun’s meridional circulation speed using EnKF-DART 

• DART has been demonstrated to be a powerful tool for reconstructing time-varying meridional 
flow-speed (see, e.g., Dikpati, Anderson & Mitra, 2014, 2016a, 2016b)

• Reconstruction (red curve) is reasonably good with 16 ensemble members, and gets much 
improved with decrease in observational error and increase in number of observations and 
ensemble size.

• For an initial guess far-off from truth, reconstructed state asymptotically converges toward the 
truth (blue curve)

Solar meridional 
circulation plays a 
crucial role in spot-
producing magnetic 
fields’ dynamics, but its 
spatio-temporal pattern 
is not fully known



Simple Implementation of Ensemble Filter (EnKF)
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Ensemble Filters can also be implemented as 2 simple steps:

1. Compute forward operator for a single observed quantity 
and use a 1D ensemble filter to compute increments.

Ø Compares model estimate to actual observation.

2. Regress these increments onto each model state variable.
Ø Computes impact of observation on state variables.



EnKF: Use regression to update state variable with obs.
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Assume that all we 
know is the prior 
joint distribution.

One variable is 
observed.

What should 
happen to the 
unobserved 
variable?
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EnKF: Use regression to update state variable with obs.

Assume that all we 
know is the prior 
joint distribution.

One variable is 
observed.

Update the 
observed variable 
with 1D ensemble 
filter.
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EnKF: Use regression to update state variable with obs.

Have joint prior 
distribution of two 
variables.

Regress the observation 
increments onto each 
model state variable 
independently.
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Major Challenges for Geospace DA
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1. Quality of Model Prior Estimates of Observations.
• Strongly forced means important things aren’t in the model. 
• Models may have many other challenges.
• Hard to get good priors.
• Machine Learning methods can be applied to improve 

forecast priors.

2. Model bivariate statistics for model impact have errors.
• Have vast numbers of ensemble bivariate distributions. 
• Basic ensemble DA just does regression for each.
• Can mine these to get better estimates of impact of 

particular types of observations on particular state 
variables.



1. Ensemble DA already widely applied for geospace.

2. Challenges due to model/obs quality need to be addressed.

3. Enhancing ensemble DA with machine learning is a path 
forward.
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www.image.ucar.edu/DAReS/DART
dart@ucar.edu
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