

Improving CLM5.0 Biomass and Carbon Exchange across the Western US using Data Assimilation (DART)

Brett Raczka, NCAR, Data Assimilation Research Section (DAReS)

The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. © UCAR 2021

Carbon Monitoring Across Western US

Intensity

- Vulnerable carbon stocks create drastic change to landscape and ecosystem functioning
- Complex terrain challenges traditional carbon monitoring, flux towers, atmospheric inversions

CLM5-DART Overview

25 230 235 240 245 250 255

CLM5-DART Methods/Terminology

Single Instance Spinup Simulation

- Compset CLM5_BGC_Crop
- 200yr AD spin, 1000yr spin, transient (1850)
- Spatial Resolution (0.95°X1.25°)
- Spinup Meteorological Forcing: GRIDMET (Buotte et al., 2019)

Assimilation Run

- 80 ensemble members (CAM4 Reanalysis)
- Assimilation time window: 1998-2011, 3 cycles (looping)
- Adaptive Inflation

CLM5-DART Methods/Terminology

- Spatial Localization: Horizontal range: ~100 km
- State Space Localization: Select most important variables for carbon cycling

'Standard' Adjusted State Variables (Biomass C, N)

- Leaf carbon Live stem carbon Dead stem carbon Leaf area index Fine root carbon Live coarse root carbon Dead coarse root carbon
- Leaf nitrogen Fine root nitrogen Live coarse root nitrogen Dead coarse root nitrogen Live stem nitrogen Dead stem nitrogen

 31 and 27 % reduction in AGB and LAI respectively

Simulation Name	AGB (kgC m ⁻²)	LAI (m m ⁻²)	GPP (gC m ⁻² month ⁻¹)	ER (gC m ⁻² month ⁻¹)	NEP (gC m ⁻² month ⁻¹)
Free	1.98	1.31	48.18	47.18	1.00
CLM5-DART	1.36	0.96	38.49	37.21	1.28

Diagnostics of LAI/AGB observation acceptance and RMSE

LAI: steady acceptance rate (90%) seasonal dependence, RMSE steady

<u>AGB</u>: increasing acceptance rate (75%), decreasing RMSE

- CLM5-DART (red) reduces biomass states create <u>offsetting</u> reductions in GPP and ER compared to free run
- FLUXCOM (yellow): Machine learning approach that uses flux tower data, satellite data and meteorology as explanatory variables for carbon cycling data product Jung et al., (2020).

- Difference due to disturbance history?
- Need more adjusted variables in CLM5-DART?

CLM5-DART simulates weak carbon sink compared to FLUXCOM

1998-2011 Average Fluxes

Water limitation shapes carbon uptake pattern

 Soil moisture limitation and GPP highly correlated (spring: R=0.64; summer: R=0.67)

 Simulated snow has low bias

Impact of adjusted variables (loop 3 only)

Key Points

- Assimilating observations of biomass and leaf area reduced simulated biomass and projects a weak land carbon sink across the Western US.
- The estimate of carbon uptake was robust across various assimilation setup settings.
- Our estimate of carbon exchange contrasts with an independent FLUXCOM estimate that shows a significant carbon sink in the Western US.
- Water cycle observations should be used to complement biomass observations to improve the spatial pattern of modeled carbon fluxes

Improving CLM5.0 Biomass and Carbon Exchange across the Western US Using a Data Assimilation System

Brett Raczka, Tim Hoar, Henrique Duarte, Andy Fox, Jeff Anderson, David Bowling John Lin **Accepted; JAMES

Future Directions

Additional data streams help constrain carbon cycling

Using high res land cover maps for improved forward operators (PFT specific).

	North Contraction
Deciduous Forest	
Evergreen Forest	1 10 22 73
Mixed Forest	
Dwarf Scrub	
Shrub/Scrub	
Grassland/Herbaceous	
Sedge/Herbaceous	CONT. MON
Pasture/Hay	
Cultivated Crops	Contra o
Woody Wetlands	and the second
Emergent Herbaceous Wetlands	6340

Parameter Estimation

Finer Spatial Resolution?

For more information:

