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Overview

• Theory/Methods of 
EnKF Data Assimilation,
Data Assimilation Research Testbed  
(DART)

• Application of Data Assimilation to 
Western US Carbon Cycling

• Future Directions: expanding 
satellite observations of land 
surface properties

*
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Stavros et al., (2017)



Motivation for DA in Earth System Models

Bonan & Doney 2018

Simulated Biomass in Western US
Duarte et al., (in revision)

Boundary 
Condition
Uncertainty

Model 
Uncertainty

3

< 2200 m
> 2200 mElevation 



Motivation for DA in Earth System Models

Dietze et al.,  2018
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Earth System DART applications
Atmosphere:  CO w/ CAM-Chem Ocean: Gulf Stream Eddy Dynamics (MITgcm)

River Transport: StreamFlow in WRF-Hydro 
(Hurricane Florence)
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Hydrograph: Rocky River near Norwood, SC
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Geophysical Models Interfaced to DART

MITgcm_ocean
NAAPS

NCOMMAS
PBL_1d

POP

BGRID
CAM

CLM

COAMPS

COAMPS_nest

MPAS_OCN

MPAS_ATM

NOAH-MP

PE2LYR

SQG

WRF

TIEGCMGITM

GCOM
WRF-Hydro (NOAA)ROMS

CABLE

WACCM

CAM-Chem
WRF-Chem

WACCM-X

CICE

CM1AM2

FESOM

LMDZ

ROSE
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Earth System Observations (others available) 

CHAMP

WODROMS

MADIS

GSI2DART

GRACE

GOES

COSMOS

CONAGUA
cice

AmeriFlux
NCEP+ACARS

AURA
MODIS

SSUSI

VTEC

ATCF

TPW

Radar
QuikSCAT ok_mesonet

GPS

MPD

SIF

NCDCPODAAC

DWLGMI

GTSPP

CMEMS

MOPITT

Instruments supported by RTTOV 

AIRS

SNOTEL
SMOS, SMAP
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Basics of EnKF Data Assimilation
• Observations combined with a model forecast to produce 

an improved forecast (‘analysis’).
• Typically adjust the system state, but also model parameters

This is an ‘observed’ state variable, but what about ‘unobserved’ state variables?

‘increments’

*

Posterior ~  Prior · Observation Likelihood  

Bayes Theorem

‘Update’ or ‘analysis’ Model generated Earth System Observations

5 prior model estimates of temperature 1 new observation 
of temperature
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Basics of EnKF Data Assimilation
• Imagine you were modeling temperature across Salt Lake City but only had temperature 

observations at Alta Ski Resort

Ensemble of model 
generated temperatures

Modeled Temp (Alta)
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Apply correction to model w/ 
observed temp

Apply correction to 
unobserved temp

Generate posterior

• This is a simple example, but in complex ESMs this can be applied across entire model
state: both in physical space, and across different variables.

• How can we apply correlations to improve model performance for Land DA?
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Expanding Earth System Observations

Ground Based Ecological 
Observation Networks:

NEON, Ameriflux

Remote Sensing 
Satellites

2018
20182019

2020
HISUI

Metzger et al., (2019)

Stavros et al., (2017)
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Land-Atmosphere 
CO2, water 
exchange

Biological 
Measurements



Components of a land surface model (CLM)
Energy balanceHydrologyCarbon and nitrogen cycles

• The carbon cycle is coupled to, and
influenced by the nitrogen, water cycles
and surface energy balance
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Gross Primary Productivity (GPP)
Ecosystem Respiration (ER)
Net Ecosystem Production (NEP)
NEP = GPP – ER



Limitations of remotely-sensed land observations

Snow (SWE)

Bedrock

Soil moisture, Carbon, Temp

Leaf Area, Biomass, SIF Soil Moisture, Temp, Snow

Soil moisture, Carbon, Temp

• Spatial Coverage 

• Temporal Coverage

• Sub-surface Coverage
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Snow: up to 12 
vertical layers
Ice, water etc.

Soil: up to 25 
vertical layers
Carbon, water, 
ice properties



Limitations of ground-based land observations

Snow (SWE)

Snow: up to 12 
vertical layers
Ice, water etc.

Soil: up to 25 
vertical layers
Carbon, water, 
ice properties

Bedrock

Soil moisture, Carbon, Temp

Soil moisture, carbon, temp

• Spatial Coverage 

• Temporal Coverage

• Sub-surface Coverage

Land 
Atmosphere
Carbon/
Water flux

Soil moisture, Carbon, Temp

• Horizontal Spatial Correlations Important for 
limited surface observation network

NEON
site
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Carbon Monitoring Across Western US
US Drought Monitor,

Oct 26, 2021
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Palmer Drought Severity Index 
(1895-present for California)

Sep 2021197819451895

wetter

drier



Carbon Monitoring Across Western US

• Complex terrain 
challenges 
traditional carbon 
monitoring, flux 
towers, atmospheric 
inversions

Top-Down Modeling Bottom-Up Modeling

Atm. Transport 
Model

Atmospheric CO2

Land carbon exchange

Land Surface 
Model (CLM)

Land carbon exchange

Weather/Climate
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• Approaches to 
quantify regional 
land-atmosphere 
exchange of CO2



Generating an assimilation in CLM5-DART

CAM DART Reanalysis
(80 member ensemble)

‘Inflation’ helps maintain 
ensemble spread

Raeder et al., (2012, 2021)

• Ensemble Sampling error
• Model vs. Observation Bias
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1) Initialize 
model states

3) Assimilate 
observations

free 

assim

2) Generate 
ensemble spread

single CLM simulation 80 member
CLM ensemble obs

Biomass

time

CAM4 Reanalysis (~2o) CAM6 Reanalysis (~1o)
Ds199.1 | DOI: 10.5065/38ED-RZ08 Ds345.0 | DOI: 10.5065/JG1E-8525



CLM5-DART Overview

Ds199.1 | DOI: 10.5065/38ED-RZ08

CAM4 DART Reanalysis
(80 member ensemble) Grid Cell 

(~1ox1o)
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‘Localized’ the adjustments to biomass:  
7 carbon and 7 nitrogen state variables



 

Simulation 
Name 

AGB             
(kgC m-2) 

LAI         
(m m-2) 

GPP                 
(gC m-2 month-1) 

ER                               
(gC m-2 month-1) 

NEP                  
(gC m-2 month-1) 

Free 1.98 1.31 48.18 47.18 1.00 

 CLM5-DART 1.36 0.96 38.49 37.21 1.28 

Observations reduce biomass/leaf area, net carbon flux steady

• ~30 % 
reduction in 
AGB and LAI 
respectively

BiomassLeaf Area

NEP (Land Carbon Uptake)

CLM5 only

CLM5-
DART
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Diagnostics of LAI/AGB observation acceptance and RMSE

Leaf Area: loop 1

Biomass: loop 1

Leaf Area :  steady 
acceptance rate  
(90%) seasonal 
dependence, 
RMSE steady

Biomass :  
increasing 
acceptance rate 
(75%), decreasing 
RMSE

Observations 
possible

Observations 
assimilated

Prior RMSE

Observations 
possible

Observations 
assimilated

Prior RMSE
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Behavior for dominant Plant Functional Types

Leaf Area 
(m2 m-2)

Temp. Evergreen Forest Boreal Evergreen Forest

Temp. ShrubC3 Grass

Biomass
(gC m-2)

Temp. Evergreen Forest Boreal Evergreen Forest
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CLM5-DART simulates weak carbon sink compared to FLUXCOM

• CLM5-DART (red) 
reduces biomass 
states create 
offsetting
reductions in GPP 
and ER compared 
to free run

21

GPP NEP

ER Cumulative 
NEP



CLM5-DART simulates weak carbon sink compared to FLUXCOM

• CLM5-DART (red) 
reduces biomass 
states create 
offsetting
reductions in GPP 
and ER compared 
to free run

• FLUXCOM (yellow):
Machine learning 
approach that 
trains satellite data 
and meteorology to 
flux tower data to 
generate a carbon 
flux product Jung et 
al., (2020).

CLM5-DART:
• Strength: more explicit disturbance history, not 

dependent on flux tower CO2 data
• Weakness: limited adjusted variables (biomass)

GPP NEP

ER Cumulative 
NEP
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CLM5-DART simulates weak carbon sink compared to FLUXCOM

Free CLM5 CLM5-DART FLUXCOM

GPP

ER

NEP

1998-2011 
Average 
Fluxes

Strong uptakeWeak, neutral uptake
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Water limitation shapes carbon uptake pattern

Soil moisture 
limitation

(0-1)

GPP
(gC m-2 mth-1)

Snow 
water 

equivalent
(mm)

• Soil moisture 
limitation and GPP 
highly correlated 
(spring: R=0.64; 
summer: R=0.67)

• Simulated snow 
has low bias

Spring (1998-2011) Summer (1998-2011)
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Current Land Data Assimilation: Arctic
Arctic Boreal Domain (ABoVE Project),   Led by:  Xueli Huo, Andy Fox
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• 30 % reduction 
in Leaf Area



Current Land Data Assimilation: Arctic
Arctic Boreal Domain (ABoVE Project),   Led by:  Xueli Huo, Andy Fox 
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Current Land Data Assimilation: Soil Moisture
• Gap-Filling Soil moisture products across China

• European Space Agency Climate Change Initiative
Essential Climate Variable (ECV)

Led by: Daniel Hagan, Nanjing University
of Information Science & Technology

ECV Soil Moisture Product
(m3 m-3) CLM-DART

Compares favorably to
GLEAM Soil Moisture 
Data Product  (1998)

Unbiased RMSD (m3 m-3) 

Correlation
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Challenges in Land DA : Soil Moisture

• Model/Data product bias is challenging 
to address

• The trends and patterns in the data are 
useful.  Cumulative Distribution 
Function (CDF) matching re-scales data 
products to match the magnitude and 
variation of model

Reichle & Koster 2004 (GRL) 

(Model) – (Data Product), Before

(Model) – (Data Product), After

CDF Matching
volumetric soil moisture (mm3/mm3); Koster et al., 2009

model Data
product
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• Soil moisture data are prone to systemic bias 
in magnitude



Current challenges in Land DA : Snow

• CLM snow will compact and subdivide 
into layers depending upon layer 
thickness

• This creates unique snow properties for 
each layer

• This presents challenges for DA systems

Snow Hydrology: Snow Water Equivalent

Ice content
Water content

Snow Albedo: Surface Energy Balance

Black/organic carbon
Dust
Snow Grain radius



Current challenges in Land DA : Snow

Ensemble members 1-3

CAM DART Reanalysis
(80 member ensemble)

30

Soil layers 
identical

• Standard implementation of DART regression and 
update step will not work if layer (and property) does 
not exist for all ensemble members

Snow layers vary !



Current challenges in Land DA : Snow

Ground

Snow (SWE)
Observations

Snow Layeri + ∆
“ ” + ∆ i= 2
“ ” + ∆ i= 3
“ ” + ∆ i= n

Model 
Estimated SWE

Snow
Layer

Property i = n 

Column      
SWE

Ground

Snow Layeri + ∆
“ ”                   i= 2
“ ”                   i= 3
“ ”                   i= n

∆ Total SWE ≠ Σ(∆Layers) 

×

√

Model 
Estimated SWE

∆ Total Ice   ≠ Σ(∆Layers)    
∆ Total Liquid  ≠ Σ(∆Layers)     
∆ Total Depth  ≠ Σ(∆Layers)     

Standard     
Approach

Added Snow re-
partitioning
algorithm ∆ Total SWE = Σ(∆Layers) 

∆ Total Ice   = Σ(∆Layers)    
∆ Total Liquid = Σ(∆Layers)     
∆ Total Depth = Σ(∆Layers)     

Repartitioning 
Algorithm

Snow updates 
are internally 
consistent

Snow updates 
not internally 
consistent



Challenges in Land DA: Solar-Induced Fluorescence

• SIF is a useful indicator 
of timing/magnitude of 
photosynthesis (GPP)

Day of Year

• Strong SIF-GPP 
relationship  
across many 
vegetation types

32

Sun et al.,
(2018)

Magney et al., (2019)

Niwot Ridge, CO; Evergreen Forest



Advancing observations & models together

Increasing model 
complexity

(Leaf water potential) Ψleaf SIFcanopy

SIFleaf

CLM 4.5
(Soil Moisture Stress

Formulation)

Current:  CLM 5.0
Added Hydraulic 

Stress & SIF

Veg. Optical Depth

Surface Temp

Leaf Area

SIF
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Smith et al., (2020)

Expanding satellite observation network



Advances in DART

• Addressing Bounded Quantities:

General Ensemble Filtering
Framework Using Quantiles
(GEFFQ) – Jeff Anderson
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• Increased emphasis on coupled 
Earth System assimilations     
(e.g. land-atmosphere coupling)

*



For more information:

https://dart.ucar.edu
https://docs.dart.ucar.edu

dart@ucar.edu
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and UUSL0007. 

https://dart.ucar.edu/
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Example of DART workflow

Ds199.1 | DOI: 10.5065/38ED-RZ08

CAM4 DART Reanalysis
(80 member ensemble)
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Current Land Data Assimilation: Soil Moisture
Assimilating Surface Soil Moisture Observations (Passive/Active Microwave Bands)
Led by: Daniel Hagan, Nanjing University of Information Science & Technology
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Current Land Data Assimilation: Arctic
Arctic Boreal Domain (ABoVE Project)
Led by:  Xueli Huo, Andy Fox and others

Leaf Area (Monthly)
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Future Directions

Parameter Estimation

Additional data streams help 
constrain carbon cycling

Using high res land cover maps
for improved forward operators (PFT specific).

Finer Spatial Resolution?

CLM parameters

CAM4 Reanalysis (~2o) CAM6 Reanalysis (~1o)
Ds199.1 | DOI: 10.5065/38ED-RZ08

Land
surface:

Atmosphere:

Ds345.0 | DOI: 10.5065/JG1E-8525
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Bring models & observations closer together

40 of 45

“Meeting in 
the middle 
manuscript”

Alexei 
Shiklomanov

àSoil moisture/ 
vegetation optical depth/  
radiative transfer 
characteristics
For leaf propertiesß

Add SIF here as well   leaf 
to canopy level SIF   
getting closer to 
observations


