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We want to find the state of a dynamical system using: [1] an imperfect
Model and [2] a set of sparse, noisy Observations

Bayes Rule:

Ok X-1, Ye-1) - p (¥ lxe, Y1)
p (xilyk, Yeop) = 2 p (yilxe, Yi
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1.2 The Prior Distribution p (xx|Yk-1)

O Assumed normal ~ N (x{ , P{ ) ; approximated using an EnKF

Pf:LN xf’i—xf xf’i—xfT 2
() (5K @
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1.2 The Prior Distribution p (xx|Yk-1)

O Assumed normal ~ ¥ (x{ , P{ ) ; approximated using an EnKF

O Most EnKF errors are associated with the background covariance

o Sampling errors ~» variance underestimation
o Model biases ~» ensemble collapse
o Rank deficiency

O (For now) we can't afford large ensembles and generally we can’t
do much about model biases

O Others known errors:
nonGaussianity, nonlinearity, regression errors, ...
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1.3 What can be done?
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10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Ensemble Covariance Enhanced Covaraince

Holy Covariance: lim P* = B

—00

1. Inflation: increases the variance, rank is unchanged* P/ = A - P*
2. Localization: removes spurious correlations, increases the rank P/ = p o P*
3. Hybridization: P/ = aP® + (1 - a)B
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2.1 Hybrid EnKF-OlI: Terminologies

O OI Optimal Interpolation (essentially a KF with a prescribed invariant Pf)
O Often referred to as EnKF-3DVar
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O OI Optimal Interpolation (essentially a KF with a prescribed invariant Pf)
O Often referred to as EnKF-3DVar
O Initial effort by Hamill and Snyder (2000)

What's the idea?

Use a background covariance in the EnKF that is an “average"
(weighted sum) of a flow-dependent background error covariance es-
timated from an ensemble and a predefined static covariance from a
3DVar or an Ol system

O Many different hybrid forms in the literature:

v

4DEnVar: 4DVar with background covariance from an ensemble

v

EngDVar: Use an ensemble to approximate adjoint

v

hybrid 4(3)DVar: Var methods using a combination of climatological and
ensemble covariances (e.g., a-control method in GSI)

v

EnVar: Term used for any of the previous hybrid forms /
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2.2 Hybrid EnKF-Ol: in action

P/ = aP°+(1-a)B
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2.2 Hybrid EnKF-Ol: in action
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2.2 Hybrid EnKF-Ol: in action

P/ = aP°+(1-a)B

PN =20 P/ =0.0P¢ + (1 -0.0)B

20
30 {8
40
50
60
70
80
90 I
iaki
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Changes to the rank, variance, correlations, norm .. of the covariance y
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2.3 How to construct B

O Auvailable from 3DVar systems (e.g., NMC method)

O Often formed from a large inventory of historical forecasts
sampled over large windows (practical choice)

6/17



2.3 How to construct B

O Auvailable from 3DVar systems (e.g., NMC method)

O Often formed from a large inventory of historical forecasts
sampled over large windows (practical choice)

O Spectral decomposition is desirable
B =ss’ =Ss’, (3)

where S = SQ7.

6/17



2.3 How to construct B

O Auvailable from 3DVar systems (e.g., NMC method)

O Often formed from a large inventory of historical forecasts
sampled over large windows (practical choice)

O Spectral decomposition is desirable
B =SQs” =Ss7, (3)
where S = SQ7.
O Succession of transform operators, B = B!/2BT/2

B'? =U,SU,U, (4)

6/17



2.3 How to construct B

O Auvailable from 3DVar systems (e.g., NMC method)

O Often formed from a large inventory of historical forecasts
sampled over large windows (practical choice)

O Spectral decomposition is desirable
B =SQs” =Ss7, (3)
where S = SQ7.
O Succession of transform operators, B = B!/2BT/2

B'? =U,SU,U, (4)

O Storage issue: B is of size (Ny X Ny); Ny is the state dimension

6/17
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O Auvailable from 3DVar systems (e.g., NMC method)

O Often formed from a large inventory of historical forecasts
sampled over large windows (practical choice)

O Spectral decomposition is desirable
B =SQs” =Ss7, (3)
where S = SQ7.
O Succession of transform operators, B = B!/2BT/2

B'2 =U,SU, U, (4)

O Storage issue: B is of size (Ny X Ny); Ny is the state dimension

o Do we need to store the entire B matrix? May only need access to
the historical (climatology) realizations
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2.4 Hybrid EnKF-Ol: Adaptive Form

‘How to choose a?
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2.4 Hybrid EnKF-Ol: Adaptive Form

How to choose a?|

O The ensemble statistics should satisfy (Desroziers et al., 2005):
E[dd"] =R+HP/H, (5)
where d = y° — Hx/. Substitute the hybrid covariance form in eq. (5):

E[dd"] =R+ aHP'H" + (1-a)HBH', 0<a<1 (6)

> Assume «a to be a random variable
Start with a prior distribution for a: p(a) ~ ¥, %, ..

v

v

Use the data to construct a likelihood function: p(d|«)

v

Use Bayes’ rule to find an updated estimate of a:

plald) ~ p(a) - p(d]a) @)

v

Posterior a can be used as the prior for the next DA cycle
7/17



2.4 Hybrid EnKF-Ol: Adaptive Form cont.

switch Prior
case ‘Gaussian’

2
! (o — ay)
p(ac):,/\f af,0n; | = exp |———21
( f) 2no3, 203,

case ‘Beta’
pla) =B(y,p) = 0()"1(1 _ a)ﬁ—lw

T'()I(p)

end
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2.4 Hybrid EnKF-Ol: Adaptive Form cont.

switch Prior
case ‘Gaussian’

2
1 (a - ay)
pla) =N |af, 04, ) = exp | -—————
( f) /—2M§f 203,

case ‘Beta’

pla) =B(y,p) = 0()"1(1 _ a)ﬁ—lw

INOAIN())
end
Likelihood:
O(a) = trace(R) + atrace (HPEHT) + (1 — a)trace (HBHT)
pdla) = ——exp [—ﬂ]
\/2m0(a) 20(a)

Posterior: p(a|d) is either near Gaussian or near Beta
8/17



2.5 Hybrid EnKF-OI: Illustration

Scalar Example

6 parameters

P° 02=09
B 02=02
R 02=0.1
d d=25
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Scalar Example
6 parameters

d d=25

Distribution

25

-
o

-

0.5

Bayes Update for Weighting Factor

—Normal: M=0.50, V=0.05
== Beta: M=0.50, V=0.05
—-—- Likelihood Function

— Post-N: M=0.66, V=0.0291
== Post-B: M=0.76, V=0.0296

Gaussian Post
N(0.66,0.03)

Gaussian Prior

N(0.5,0.05) —

Beta Prior A
B(2,2) -

‘/'

Beta Post
55(4.33,2.08)
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2.5 Hybrid EnKF-OI: Illustration

Bayes Update for Weighting Factor

25

Scalar Example

6 parameters 2
2
e
B 2 _ c15
05 = 0.2 o
5 =
R o0,=01 2
2
d d4=25 a 1
Large bias causes a to 05
increase (i.e., larger
weight given to 02)
0

—Normal: M=0.50, V=0.05
== Beta: M=0.50, V=0.05
—-—- Likelihood Function

— Post-N: M=0.66, V=0.0291
== Post-B: M=0.76, V=0.0296

Gaussian Post
N(0.66,0.03)

Gaussian Prior
N(0.5,0.05)

Beta Prior
B(2,2)

—>

Beta Post
55(4.33,2.08)
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2.6 Hybrid EnKF-OI: Implementation

O Estimate moments of the hybrid weight pdf at each assimilation
cycle using the data:

o Maximizing the posterior requires finding cubic polynomial roots
o Similar algorithm to existing adaptive inflation schemes
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2.6 Hybrid EnKF-OI: Implementation

O Estimate moments of the hybrid weight pdf at each assimilation
cycle using the data:

o Maximizing the posterior requires finding cubic polynomial roots
o Similar algorithm to existing adaptive inflation schemes

O DART implementation available dart.ucar.edu E E
I

P— R docs.dart.ucar._gdu

INEXT-GENERATION SPACE WEATHER

PREDICTION

h

O Can assume the hybrid weight to be spatially-varying
o Biases are not homogenous in space
o Heterogenous observation networks (densely observed regions
tend to have small ensemble spread)
o Need to assimilate the observations serially
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3.1 Experiments using L96

Initial ensemble covariance
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O Observe every other variable (R = 1) . 3
O Observe every 5 time steps ‘_g é
O B Climatological run (1000) 3 %
O p(a) ~ N (0.5,0.1)
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3.1 Experiments using L96

Initial ensemble covariance
=

Log6: 40 variables

Observe every 5 time steps

State variables

O
O Observe every other variable (R = 1)
O
O

Explained variance

B Climatological run (1000)

O pla) ~ ¥(0.5,0.1)

Sensitivity Tests [1]

Perfect OSSEs
O Ensemble size

O Obs. Network . 8
kX 2
Sensitivity Tests [2] 5= 3
Model Errors B %
O Inflation
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3.2 Sensitivity Tests: Ensemble Size

1. EnKF

2. EnOI: EnKF with fixed B
(Hybrid; @ = 0)

3. EnKF-OL a = 0.5

4. AC-EnKF-OI: Adaptive,
spatially-Constant
EnKF-OI

5. AV-EnKF-OI: Adaptive,
spatially-Varying EnKF-OI

Prior and Posterior RMSE

3.5
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Ensemble Sensitivity
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Posteriors: Dashed curves
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3. EnKF-OL a = 0.5

4. AC-EnKF-OI: Adaptive,
spatially-Constant
EnKF-OI

5. AV-EnKF-OI: Adaptive,
spatially-Varying EnKF-OI

EnKF’s accuracy is
reproduced by the hybrid
schemes with 40 — 50%
less ensemble members

Prior and Posterior RMSE
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3.2 Sensitivity Tests: Ensemble Size
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O AC-EnKF-OI: Dashed lines 8
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3.2 Sensitivity Tests: Ensemble Size

O AC-EnKF-OI: Dashed lines
O AV-EnKF-OI: Solid lines
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Weighting Factor

1 Z2% o e P
R I I
State Variable
1
O For small ensembles, both
1 1 o 0.8
adaptive spatially-constant 5
. o
and varying schemes behave & o6l
j=2J
the same £ o —e— AG-EnKF-OI
2041
O AV-EnKF-OI responds more 2 — AVEnKFOl

et
N
T

efficiently to changes in the
ensemble
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3.3 Sensitivity Tests: Observation Network

O Data Void I: Observe
the first 20 variables
O Data Void II: Observe £
(]
the first and last 5 5
[=4
variables £
®
O Data Void III: Observe % — Data Void |
10 center variables S —— Data Void I P
oot e
. Data Void Ill + *
O Data Void IV: Observe ool 150, e |
. : = Data Void IV * RMSE
5 center variables Sproad
0.89 |
| 1} 1]} v
0.88 ‘ ‘ ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35

State Variables
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5 center variables Sproad
0.89 |
| 1} 1]} v
0.88 ‘ ‘ ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35

State Variables

O In densely observed regions, the ensemble spread decreases

O Hybrid scheme places weight more on B to increase the variance, allowing better

data fit 13/ 17



Sensitivity Tests: Model Errors + Inflation

Ensemble size: 20

Model error; vary
3<F<13

B is generated in each
case using biased F

No localization

Inflation
]

AV-EnKF-OlI

6 7 8 9
Forcing (F)

EnKF
6
1
55
1.01
s 1.02
45 o 1.04
8
4 T 1.08
E
35 =115
3 1.2
15
25
2
2
3 4 5 6 7 8 9 10 11 12 13 3 4 5
Forcing (F)
Hybrid Weighting Factor
1
1.01
1.02
o 1.04
k=)
T 108
=
1.15
12
15

~

5 6 7 8 9 10 11 12 13
Forcing (F)

10 11 12 13
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Sensitivity Tests: Model Errors + Inflation

EnKF AV-EnKF-OI
6 6
. 1 1
O Ensemble size: 20 o 55 o 55
O Model error; vary 102 ° 102 5
45 45
3<F<13 5" 5
T 1.08 4 T 1.08 4
O Bis generated ineach £, v = s
case using biased F 12 . 12 s
. . 15 15
O No localization 25 25
2 2
3 4 5 6 7 8 9 10 11 12 13 ? 3 4 5 6 7 8 9 10 11 12 13
Forcing (F) Forcing (F)

Hybrid Weighting Factor

O Hybrid scheme: better stability ' 0s
1.01
. 08
and more accurate even in very 1oz .
biased conditions g 1o 0s
E 1.08 05
O As inflation increases, adaptive o s 04
increases (more weight on the 12 ZZ
. 15
ensemble covariance) —)2 0

5 6 7 8 9 10 11 12 13
Forcing (F)
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Sensitivity Tests: Model Errors + Localization

EnKF AV-EnKF-Ol

55 0.05 55

5 0.1 5

45 0.2 45
0.3

4 4
0.4

35 : 35

8 o5

3 3
1

25 2 25

2 5 2

15 100 15
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O With very little to no localization, hybrid scheme still performs exceptionally well

O Does the climatological flavor from B mitigate spurious correlations?
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Sensitivity Tests: Model Errors + Localization
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Sensitivity Tests: Model Errors + Localization
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4.1 Concluding Remarks

O Prior (background) ensemble covariance must be enhanced
O On top of inflation and localization, hybridizing P¢ with stationary OlI-based
background covariances can be helpful and perhaps crucial

O The adaptive scheme uses available data through Bayes rule to determine the
relative weighting between the ensemble and the static covariance

O Lorenz-96 experiments show promising performance
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— Only flow-dependent covariance — Ol flavor & flow-dependent information
— Requires a large ensemble size — Works well with fairly small ensembles
— Fair computational cost — Storage, additional IO cost
- Strong tuning (inf, loc, ..) — Fully adaptive, requires less inf, loc, ..
— Strong biases cause divergence — More stable; able to switch to EnOI
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