HYBRID ENSEMBLE KALMAN FILTERING AND OPTIMAL INTERPOLATION

A NEW ADAPTIVE FORMULATION

Moha Gharamti

https://dart.ucar.edu/ gharamti@ucar.edu

CU Boulder Nov. 19, 2021

National Center for Atmospheric Research
Data Assimilation Research Section (DAReS) - TDD - CISL

We want to find the state of a dynamical system using: [1] an *imperfect* **Model** and [2] a set of *sparse*, *noisy* **Observations**

We want to find the state of a dynamical system using: [1] an *imperfect* **Model** and [2] a set of *sparse*, *noisy* **Observations**

$$p\left(\mathbf{x}_{k}|\mathbf{y}_{k},\mathbf{Y}_{k-1}\right) = \frac{p\left(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}\right) \cdot p\left(\mathbf{y}_{k}|\mathbf{x}_{k},\mathbf{Y}_{k-1}\right)}{p\left(\mathbf{y}_{k}|\mathbf{Y}_{k-1}\right)} \tag{1}$$

- $p(\mathbf{x}_k|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}) \rightarrow \text{Prior}$
- $p(\mathbf{y}_k|\mathbf{x}_k,\mathbf{Y}_{k-1}) \sim$ Likelihood
- $p(\mathbf{x}_k|\mathbf{y}_k,\mathbf{Y}_{k-1}) \sim$ Posterior

We want to find the state of a dynamical system using: [1] an *imperfect* **Model** and [2] a set of *sparse*, *noisy* **Observations**

$$p\left(\mathbf{x}_{k}|\mathbf{y}_{k},\mathbf{Y}_{k-1}\right) = \frac{p\left(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}\right) \cdot p\left(\mathbf{y}_{k}|\mathbf{x}_{k},\mathbf{Y}_{k-1}\right)}{p\left(\mathbf{y}_{k}|\mathbf{Y}_{k-1}\right)}$$
(1)

- $p(\mathbf{x}_k|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}) \rightarrow \text{Prior}$
- $p(\mathbf{v}_k|\mathbf{x}_k,\mathbf{Y}_{k-1}) \sim \text{Likelihood}$
- $p(\mathbf{x}_k|\mathbf{y}_k,\mathbf{Y}_{k-1}) \sim$ Posterior

We want to find the state of a dynamical system using: [1] an *imperfect* **Model** and [2] a set of *sparse*, *noisy* **Observations**

$$p\left(\mathbf{x}_{k}|\mathbf{y}_{k},\mathbf{Y}_{k-1}\right) = \frac{p\left(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}\right) \cdot p\left(\mathbf{y}_{k}|\mathbf{x}_{k},\mathbf{Y}_{k-1}\right)}{p\left(\mathbf{y}_{k}|\mathbf{Y}_{k-1}\right)}$$
(1)

- $p(\mathbf{x}_k|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}) \rightarrow \text{Prior}$
- $p(\mathbf{y}_k|\mathbf{x}_k,\mathbf{Y}_{k-1}) \sim \text{Likelihood}$
- $p(\mathbf{x}_k|\mathbf{y}_k,\mathbf{Y}_{k-1}) \sim$ Posterior

We want to find the state of a dynamical system using: [1] an *imperfect* **Model** and [2] a set of *sparse*, *noisy* **Observations**

$$p\left(\mathbf{x}_{k}|\mathbf{y}_{k},\mathbf{Y}_{k-1}\right) = \frac{p\left(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}\right) \cdot p\left(\mathbf{y}_{k}|\mathbf{x}_{k},\mathbf{Y}_{k-1}\right)}{p\left(\mathbf{y}_{k}|\mathbf{Y}_{k-1}\right)} \tag{1}$$

- $p(\mathbf{x}_k|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}) \rightsquigarrow \text{Prior}$
- $p(\mathbf{y}_k|\mathbf{x}_k,\mathbf{Y}_{k-1}) \sim \text{Likelihood}$
- $p(\mathbf{x}_k|\mathbf{y}_k,\mathbf{Y}_{k-1}) \sim$ Posterior

We want to find the state of a dynamical system using: [1] an *imperfect* **Model** and [2] a set of *sparse*, *noisy* **Observations**

$$p\left(\mathbf{x}_{k}|\mathbf{y}_{k},\mathbf{Y}_{k-1}\right) = \frac{p\left(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}\right) \cdot p\left(\mathbf{y}_{k}|\mathbf{x}_{k},\mathbf{Y}_{k-1}\right)}{p\left(\mathbf{y}_{k}|\mathbf{Y}_{k-1}\right)} \tag{1}$$

- $p(\mathbf{x}_k|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}) \rightarrow \text{Prior}$
- $p(\mathbf{y}_k|\mathbf{x}_k,\mathbf{Y}_{k-1}) \sim \text{Likelihood}$
- $p(\mathbf{x}_k|\mathbf{y}_k,\mathbf{Y}_{k-1}) \sim$ Posterior

We want to find the state of a dynamical system using: [1] an *imperfect* **Model** and [2] a set of *sparse*, *noisy* **Observations**

$$p\left(\mathbf{x}_{k}|\mathbf{y}_{k},\mathbf{Y}_{k-1}\right) = \frac{p\left(\mathbf{x}_{k}|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}\right) \cdot p\left(\mathbf{y}_{k}|\mathbf{x}_{k},\mathbf{Y}_{k-1}\right)}{p\left(\mathbf{y}_{k}|\mathbf{Y}_{k-1}\right)}$$
(1)

- $p(\mathbf{x}_k|\mathbf{x}_{k-1},\mathbf{Y}_{k-1}) \rightsquigarrow \text{Prior}$
- $p(\mathbf{y}_k|\mathbf{x}_k,\mathbf{Y}_{k-1}) \sim \text{Likelihood}$
- $p(\mathbf{x}_k|\mathbf{y}_k,\mathbf{Y}_{k-1}) \sim$ Posterior

○ Assumed normal ~ $\mathcal{N}\left(\mathbf{x}_{k}^{f}, \mathbf{P}_{k}^{f}\right)$; approximated using an EnKF

$$\mathbf{P}_{k}^{f} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right) \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right)^{T}$$
(2)

O Assumed normal $\sim \mathcal{N}\left(\mathbf{x}_{k}^{f}, \mathbf{P}_{k}^{f}\right)$; approximated using an EnKF

$$\mathbf{P}_{k}^{f} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right) \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right)^{T}$$
(2)

Most EnKF errors are associated with the background covariance

○ Assumed normal ~ $\mathcal{N}\left(\mathbf{x}_{k}^{f}, \mathbf{P}_{k}^{f}\right)$; approximated using an EnKF

$$\mathbf{P}_{k}^{f} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right) \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right)^{T}$$
(2)

- Most EnKF errors are associated with the background covariance
 - \circ Sampling errors \rightarrow variance underestimation

O Assumed normal $\sim \mathcal{N}\left(\mathbf{x}_{k}^{f}, \mathbf{P}_{k}^{f}\right)$; approximated using an EnKF

$$\mathbf{P}_{k}^{f} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right) \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right)^{T}$$
(2)

- Most EnKF errors are associated with the background covariance
 - Sampling errors → variance underestimation
 - \circ Model biases \sim ensemble collapse

○ Assumed normal ~ $\mathcal{N}\left(\mathbf{x}_{k}^{f}, \mathbf{P}_{k}^{f}\right)$; approximated using an EnKF

$$\mathbf{P}_{k}^{f} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right) \left(\mathbf{x}_{k}^{f,i} - \mathbf{x}_{k}^{f} \right)^{T}$$
(2)

- Most EnKF errors are associated with the background covariance
 - Sampling errors → variance underestimation
 - o Model biases → ensemble collapse
 - Rank deficiency

O Assumed normal $\sim \mathcal{N}\left(\mathbf{x}_{k}^{f}, \mathbf{P}_{k}^{f}\right)$; approximated using an EnKF

$$\mathbf{P}_k^f = \frac{1}{N-1} \sum_{i=1}^N \left(\mathbf{x}_k^{f,i} - \mathbf{x}_k^f \right) \left(\mathbf{x}_k^{f,i} - \mathbf{x}_k^f \right)^T$$
 (2)

- Most EnKF errors are associated with the background covariance
 - Sampling errors → variance underestimation
 - Model biases → ensemble collapse
 - Rank deficiency
- (For now) we can't afford large ensembles and generally we can't do much about model biases

○ Assumed normal ~ $\mathcal{N}\left(\mathbf{x}_{k}^{f}, \mathbf{P}_{k}^{f}\right)$; approximated using an EnKF

$$\mathbf{P}_k^f = \frac{1}{N-1} \sum_{i=1}^N \left(\mathbf{x}_k^{f,i} - \mathbf{x}_k^f \right) \left(\mathbf{x}_k^{f,i} - \mathbf{x}_k^f \right)^T$$
 (2)

- Most EnKF errors are associated with the background covariance
 - Sampling errors → variance underestimation
 - o Model biases → ensemble collapse
 - Rank deficiency
- (For now) we can't afford large ensembles and generally we can't do much about model biases
- Others known errors:
 nonGaussianity, nonlinearity, regression errors, ...

<u>Holy Covariance</u>: $\lim_{N\to\infty} \mathbf{P}^e \approx \mathbf{B}$

<u>Holy Covariance</u>: $\lim_{N\to\infty}$ **P**^ℓ ≈ **B**

1. **Inflation:** increases the variance, rank is unchanged* $\mathbf{P}^f = \lambda \cdot \mathbf{P}^e$

<u>Holy Covariance</u>: $\lim_{N\to\infty}$ **P**^ℓ ≈ **B**

- 1. **Inflation:** increases the variance, rank is unchanged* $\mathbf{P}^f = \lambda \cdot \mathbf{P}^e$
- **2.** Localization: removes spurious correlations, increases the rank $\mathbf{P}^f = \rho \circ \mathbf{P}^e$

<u>Holy Covariance</u>: $\lim_{N\to\infty}$ **P**^ℓ ≈ **B**

- 1. **Inflation:** increases the variance, rank is unchanged* $\mathbf{P}^f = \lambda \cdot \mathbf{P}^e$
- **2.** Localization: removes spurious correlations, increases the rank $\mathbf{P}^f = \rho \circ \mathbf{P}^e$

<u>Holy Covariance</u>: $\lim_{N\to\infty}$ **P**^e ≈ **B**

- 1. **Inflation:** increases the variance, rank is unchanged* $\mathbf{P}^f = \lambda \cdot \mathbf{P}^e$
- **2.** Localization: removes spurious correlations, increases the rank $\mathbf{P}^f = \rho \circ \mathbf{P}^e$
- 3. **Hybridization:** $\mathbf{P}^f = \alpha \mathbf{P}^e + (1 \alpha)\mathbf{B}$

2.1 Hybrid EnKF-OI: Terminologies

- \bigcirc OI: Optimal Interpolation (essentially a KF with a prescribed invariant \mathbf{P}^f)
- Often referred to as EnKF-3DVar
- Initial effort by Hamill and Snyder (2000)

2.1 Hybrid EnKF-OI: Terminologies

- \bigcirc OI: Optimal Interpolation (essentially a KF with a prescribed invariant \mathbf{P}^f)
- Often referred to as EnKF-3DVar
- Initial effort by Hamill and Snyder (2000)

What's the idea?

Use a background covariance in the EnKF that is an "average" (weighted sum) of a flow-dependent background error covariance estimated from an ensemble and a predefined static covariance from a 3DVar or an OI system

2.1 Hybrid EnKF-OI: Terminologies

- \bigcirc OI: Optimal Interpolation (essentially a KF with a prescribed invariant \mathbf{P}^f)
- Often referred to as EnKF-3DVar
- Initial effort by Hamill and Snyder (2000)

What's the idea?

Use a background covariance in the EnKF that is an "average" (weighted sum) of a flow-dependent background error covariance estimated from an ensemble and a predefined static covariance from a 3DVar or an OI system

- O Many different *hybrid* forms in the literature:
 - ▶ 4DEnVar: 4DVar with background covariance from an ensemble
 - ▶ En4DVar: Use an ensemble to approximate adjoint
 - ▶ hybrid 4(3)DVar: Var methods using a combination of climatological and ensemble covariances (e.g., α -control method in GSI)
 - EnVar: Term used for any of the previous hybrid forms

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

$$\mathbf{P}^f = \alpha \mathbf{P}^e + (1 - \alpha) \mathbf{B}$$

Changes to the rank, variance, correlations, norm .. of the covariance

/ 17

2.3 How to construct B

- Available from 3DVar systems (e.g., NMC method)
- Often formed from a large inventory of historical forecasts sampled over large windows (practical choice)

- Available from 3DVar systems (e.g., NMC method)
- Often formed from a large inventory of historical forecasts sampled over large windows (practical choice)
- Spectral decomposition is desirable

$$\mathbf{B} = \mathbf{S}\mathbf{\Omega}\mathbf{S}^T = \widehat{\mathbf{S}}\widehat{\mathbf{S}}^T,\tag{3}$$

where $\widehat{\mathbf{S}} = \mathbf{S} \mathbf{\Omega}^{\frac{1}{2}}$.

- Available from 3DVar systems (e.g., NMC method)
- Often formed from a large inventory of historical forecasts sampled over large windows (practical choice)
- Spectral decomposition is desirable

$$\mathbf{B} = \mathbf{S}\mathbf{\Omega}\mathbf{S}^T = \widehat{\mathbf{S}}\widehat{\mathbf{S}}^T,\tag{3}$$

where $\widehat{\mathbf{S}} = \mathbf{S} \mathbf{\Omega}^{\frac{1}{2}}$.

○ Succession of transform operators, $\mathbf{B} = \mathbf{B}^{1/2}\mathbf{B}^{T/2}$

$$\mathbf{B}^{1/2} = \mathbf{U}_p \mathbf{S} \mathbf{U}_v \mathbf{U}_h \tag{4}$$

- Available from 3DVar systems (e.g., NMC method)
- Often formed from a large inventory of historical forecasts sampled over large windows (practical choice)
- Spectral decomposition is desirable

$$\mathbf{B} = \mathbf{S}\mathbf{\Omega}\mathbf{S}^T = \widehat{\mathbf{S}}\widehat{\mathbf{S}}^T,\tag{3}$$

where $\widehat{\mathbf{S}} = \mathbf{S} \mathbf{\Omega}^{\frac{1}{2}}$.

○ Succession of transform operators, $\mathbf{B} = \mathbf{B}^{1/2}\mathbf{B}^{T/2}$

$$\mathbf{B}^{1/2} = \mathbf{U}_p \mathbf{S} \mathbf{U}_v \mathbf{U}_h \tag{4}$$

○ Storage issue: **B** is of size $(N_x \times N_x)$; N_x is the state dimension

- Available from 3DVar systems (e.g., NMC method)
- Often formed from a large inventory of historical forecasts sampled over large windows (practical choice)
- Spectral decomposition is desirable

$$\mathbf{B} = \mathbf{S}\mathbf{\Omega}\mathbf{S}^T = \widehat{\mathbf{S}}\widehat{\mathbf{S}}^T,\tag{3}$$

where $\widehat{\mathbf{S}} = \mathbf{S} \mathbf{\Omega}^{\frac{1}{2}}$.

○ Succession of transform operators, $\mathbf{B} = \mathbf{B}^{1/2}\mathbf{B}^{T/2}$

$$\mathbf{B}^{1/2} = \mathbf{U}_p \mathbf{S} \mathbf{U}_v \mathbf{U}_h \tag{4}$$

- O Storage issue: **B** is of size $(N_x \times N_x)$; N_x is the state dimension
 - Do we need to store the entire B matrix? May only need access to the historical (climatology) realizations

2.4 Hybrid EnKF-OI: Adaptive Form

How to choose α ?

2.4 Hybrid EnKF-OI: Adaptive Form

How to choose α ?

○ The ensemble statistics should satisfy (Desroziers et al., 2005):

$$\mathbb{E}\left[\mathbf{d}\mathbf{d}^{T}\right] = \mathbf{R} + \mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T},\tag{5}$$

where $\mathbf{d} = \mathbf{y}^o - \mathbf{H}\mathbf{x}^f$. Substitute the hybrid covariance form in eq. (5):

$$\mathbb{E}\left[\mathbf{d}\mathbf{d}^{T}\right] = \mathbf{R} + \alpha \mathbf{H} \mathbf{P}^{e} \mathbf{H}^{T} + (1 - \alpha) \mathbf{H} \mathbf{B} \mathbf{H}^{T}, \quad 0 \le \alpha \le 1$$
 (6)

2.4 Hybrid EnKF-OI: Adaptive Form

How to choose α ?

O The ensemble statistics should satisfy (Desroziers et al., 2005):

$$\mathbb{E}\left[\mathbf{d}\mathbf{d}^{T}\right] = \mathbf{R} + \mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T},\tag{5}$$

where $\mathbf{d} = \mathbf{y}^o - \mathbf{H}\mathbf{x}^f$. Substitute the hybrid covariance form in eq. (5):

$$\mathbb{E}\left[\mathbf{d}\mathbf{d}^{T}\right] = \mathbf{R} + \alpha \mathbf{H} \mathbf{P}^{e} \mathbf{H}^{T} + (1 - \alpha) \mathbf{H} \mathbf{B} \mathbf{H}^{T}, \quad 0 \le \alpha \le 1$$
 (6)

- \triangleright Assume α to be a random variable
- ▶ Start with a prior distribution for α : $p(\alpha) \sim \mathcal{N}$, \mathcal{B} , ...
- ▶ Use the data to construct a likelihood function: $p(\mathbf{d}|\alpha)$
- ▶ Use Bayes' rule to find an updated estimate of α :

$$p(\alpha|\mathbf{d}) \approx p(\alpha) \cdot p(\mathbf{d}|\alpha)$$
 (7)

ightharpoonup Posterior α can be used as the prior for the next DA cycle

2.4 Hybrid EnKF-OI: Adaptive Form cont.

```
switch Prior case 'Gaussian' p(\alpha) = \mathcal{N}\left(\alpha_f, \sigma_{\alpha_f}\right) \equiv \frac{1}{\sqrt{2\pi\sigma_{\alpha_f}^2}} \exp\left[-\frac{\left(\alpha - \alpha_f\right)^2}{2\sigma_{\alpha_f}^2}\right] case 'Beta' p(\alpha) = \Re(\gamma, \beta) \equiv \alpha^{\gamma-1}(1-\alpha)^{\beta-1}\frac{\Gamma(\gamma+\beta)}{\Gamma(\gamma)\Gamma(\beta)} end
```

2.4 Hybrid EnKF-OI: Adaptive Form cont.

switch Prior

case 'Gaussian'

$$p(\alpha) = \mathcal{N}\left(\alpha_f, \sigma_{\alpha_f}\right) \equiv \frac{1}{\sqrt{2\pi\sigma_{\alpha_f}^2}} \exp\left[-\frac{(\alpha - \alpha_f)^2}{2\sigma_{\alpha_f}^2}\right]$$

case 'Beta'

$$p(\alpha) = \Re(\gamma, \beta) \equiv \alpha^{\gamma - 1} (1 - \alpha)^{\beta - 1} \frac{\Gamma(\gamma + \beta)}{\Gamma(\gamma)\Gamma(\beta)}$$

end

Likelihood:

$$\theta(\alpha) = \operatorname{trace}(\mathbf{R}) + \alpha \operatorname{trace}\left(\mathbf{H}\mathbf{P}^{e}\mathbf{H}^{T}\right) + (1 - \alpha)\operatorname{trace}\left(\mathbf{H}\mathbf{B}\mathbf{H}^{T}\right)$$
$$p(\mathbf{d}|\alpha) = \frac{1}{\sqrt{2\pi\theta(\alpha)}}\exp\left[-\frac{\mathbf{d}^{T}\mathbf{d}}{2\theta(\alpha)}\right]$$

Posterior: $p(\alpha|\mathbf{d})$ is either near Gaussian or near Beta

2.5 Hybrid EnKF-OI: Illustration

Scalar Example 6 parameters

$$\mathbf{P}^e \quad \sigma_e^2 = 0.9$$

$$\mathbf{B} \qquad \sigma_s^2 = 0.2$$

R
$$\sigma_o^2 = 0.1$$

d $d = 2.5$

$$d = 2.5$$

2.5 Hybrid EnKF-OI: Illustration

 $\sigma_e^2 = 0.9$ $\sigma_{\rm s}^2 = 0.2$

 $\sigma_0^2 = 0.1$ R

d

d = 2.5

2.5 Hybrid EnKF-OI: Illustration

 $\sigma_s^2 = 0.2$

 $\mathbf{R} \quad \sigma_o^2 = 0.1$

d d = 2.5

Large bias causes α to increase (i.e., larger weight given to σ_e^2)

2.6 Hybrid EnKF-OI: Implementation

- Estimate moments of the hybrid weight pdf at each assimilation cycle using the data:
 - o Maximizing the posterior requires finding cubic polynomial roots
 - o Similar algorithm to existing adaptive inflation schemes

2.6 Hybrid EnKF-OI: Implementation

- Estimate moments of the hybrid weight pdf at each assimilation cycle using the data:
 - Maximizing the posterior requires finding cubic polynomial roots
 - o Similar algorithm to existing adaptive inflation schemes

DART implementation available

dart.ucar.edu docs.dart.ucar.edu

2.6 Hybrid EnKF-OI: Implementation

- Estimate moments of the hybrid weight pdf at each assimilation cycle using the data:
 - Maximizing the posterior requires finding cubic polynomial roots
 - Similar algorithm to existing adaptive inflation schemes

DART implementation available dar

dart.ucar.edu docs.dart.ucar.edu

- O Can assume the hybrid weight to be spatially-varying
 - Biases are not homogenous in space
 - Heterogenous observation networks (densely observed regions tend to have small ensemble spread)
 - Need to assimilate the observations serially

3.1 Experiments using L96

- L96: 40 variables
- Observe every other variable ($\mathbf{R} = 1$)
- Observe every 5 time steps
- **B** Climatological run (1000)
- $\bigcirc \ p(\alpha) \sim \mathcal{N}(0.5, 0.1)$

3.1 Experiments using L96

- L96: 40 variables
- \bigcirc Observe every other variable (**R** = 1)
- Observe every 5 time steps
- B Climatological run (1000)
- $oldsymbol{p}(\alpha) \sim \mathcal{N}(0.5, 0.1)$

Sensitivity Tests [1] Perfect OSSEs

- Ensemble size
- Obs. Network

Sensitivity Tests [2] Model Errors

- Inflation
- Localization

1. EnKF

- **2. EnOI**: EnKF with fixed **B** (Hybrid; $\alpha = 0$)
- 3. **EnKF-OI**; $\alpha = 0.5$
- AC-EnKF-OI: Adaptive, spatially-Constant EnKF-OI
- 5. **AV-EnKF-OI**: Adaptive, spatially-Varying EnKF-OI

1. EnKF

- **2. EnOI**: EnKF with fixed **B** (Hybrid; $\alpha = 0$)
- 3. **EnKF-OI**; $\alpha = 0.5$
- AC-EnKF-OI: Adaptive, spatially-Constant EnKF-OI
- 5. **AV-EnKF-OI**: Adaptive, spatially-Varying EnKF-OI
- ★ EnKF's accuracy is reproduced by the hybrid schemes with 40 – 50% less ensemble members

- AC-EnKF-OI: Dashed lines
- AV-EnKF-OI: Solid lines

- O AC-EnKF-OI: Dashed lines
- AV-EnKF-OI: Solid lines

- For small ensembles, both adaptive spatially-constant and varying schemes behave the same
- AV-EnKF-OI responds more efficiently to changes in the ensemble

3.3 Sensitivity Tests: Observation Network

- Data Void I: Observe the first 20 variables
- Data Void II: Observe the first and last 5 variables
- Data Void III: Observe10 center variables
- Data Void IV: Observe5 center variables

3.3 Sensitivity Tests: Observation Network

- Data Void I: Observe the first 20 variables
- Data Void II: Observe the first and last 5 variables
- Data Void III: Observe10 center variables
- Data Void IV: Observe5 center variables

- In densely observed regions, the ensemble spread decreases
- Hybrid scheme places weight more on B to increase the variance, allowing better data fit

Sensitivity Tests: Model Errors + Inflation

- Ensemble size: 20
- Model error; vary $3 \le F \le 13$
- **B** is generated in each case using biased *F*
- No localization

Sensitivity Tests: Model Errors + Inflation

- Ensemble size: 20
- Model error; vary $3 \le F \le 13$
- **B** is generated in each case using biased *F*
- No localization

- Hybrid scheme: better stability and more accurate even in very biased conditions
- \circ As inflation increases, adaptive α increases (more weight on the ensemble covariance)

- \bigcirc $N_e = 20$, No inflation
- Vary both *F* and localization length scale
- Adaptive hybrid scheme is systematically better than the EnKF for all tested cases

- Vary both *F* and localization length scale
- Adaptive hybrid scheme is systematically better than the EnKF for all tested cases
- With very little to no localization, hybrid scheme still performs exceptionally well
- O Does the climatological flavor from **B** mitigate spurious correlations?

4.5

3.5

2.5

○ For chaotic behaviour (i.e., $F \ge 8$): As localization increases, α increases

- For chaotic behaviour (i.e., $F \ge 8$): As localization increases, α increases
- Less chaotic (smaller ensemble variance): α decreases to *bring-in* variability from B

4.1 Concluding Remarks

- O Prior (background) ensemble covariance **must** be enhanced
- \bigcirc On top of inflation and localization, hybridizing P^e with stationary OI-based background covariances can be helpful and perhaps crucial
- The adaptive scheme uses available data through Bayes rule to determine the relative weighting between the ensemble and the static covariance
- Lorenz-96 experiments show promising performance

4.1 Concluding Remarks

- O Prior (background) ensemble covariance **must** be enhanced
- \odot On top of inflation and localization, hybridizing \mathbf{P}^e with stationary OI-based background covariances can be helpful and perhaps crucial
- The adaptive scheme uses available data through Bayes rule to determine the relative weighting between the ensemble and the static covariance
- Lorenz-96 experiments show promising performance

EnKF

Adaptive Hybrid EnKF-OI

- Only flow-dependent covariance
- Requires a large ensemble size
- Fair computational cost
- Strong tuning (inf, loc, ..)
- Strong biases cause divergence

- OI flavor & flow-dependent information
- Works well with fairly small ensembles
- Storage, additional IO cost
- Fully adaptive, requires less inf, loc, ..
- More stable; able to switch to EnOI

4.1 Concluding Remarks

- O Prior (background) ensemble covariance **must** be enhanced
- \bigcirc On top of inflation and localization, hybridizing P^e with stationary OI-based background covariances can be helpful and perhaps crucial
- The adaptive scheme uses available data through Bayes rule to determine the relative weighting between the ensemble and the static covariance
- Lorenz-96 experiments show promising performance

EnKF

Adaptive Hybrid EnKF-OI

- Only flow-dependent covariance
- Requires a large ensemble size
- Fair computational cost
- Strong tuning (inf, loc, ..)
- Strong biases cause divergence

- Thurst Hybrid Elliti Or
- OI flavor & flow-dependent informationWorks well with fairly small ensembles
- Storage, additional IO cost
- Fully adaptive, requires less inf, loc, ..
- More stable; able to switch to EnOI

El Gharamti, M. (2021). Hybrid Ensemble-Variational Filter: A Spatially and Temporally Varying Adaptive Algorithm to Estimate Relative Weighting. Monthly Weather Review, 149(1), 65-76.

4.2 Future: Applications to Earth System Models

4.2 Future: Applications to Earth System Models

