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1. Why Streamflow Forecasting?

Hurricane Florence (2018):

O Tropical wave ~» tropical storm ~» Category 4 Hurricane
O Landfall on Sep. 14 (Carolinas) with winds up to 150 mph
O Catastrophic damages to coastal communities [$25 billion]

O Flooding magnitude greatly exceeded the levels observed due to
Hurricane Matthew (2016) and Floyd (1999) combined!

Rainfall estimates from Hurricane Florence (Source: NWS) Hurricane Florence eye during landfall (Source: NWS)
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1. Why Streamflow Forecasting?

O Predicting major floods during extreme rainfall events is crucial

1. Save lives (~ 50 people died due to Florence Flooding)
2. Limit damages (via advance warnings)
3. Protect infrastructure, socio-economic impacts, ...

Flooded city of New
Bern, NC




2.1 The Coupled Modeling-DA Framework, HydroDART

O Interface the Data Assimilation Research Testbed [DART: Anderson
et al., 2008; BAMS] with WRF-Hydro [Gochis et al., 2020]
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2.1 The Coupled Modeling-DA Framework, HydroDART

O Interface the Data Assimilation Research Testbed [DART: Anderson
et al., 2008; BAMS] with WRF-Hydro [Gochis et al., 2020]
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2.1 The Coupled Modeling-DA Framework, HydroDART

O Interface the Data Assimilation Research Testbed [DART: Anderson
et al., 2008; BAMS] with WREF- Hydro [Gochis et al., 2020] >
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2.2 Enhancements to the DA System

1. Forcing and Ensemble Uncertainty:

3/11



2.2 Enhancements to the DA System

1. Forcing and Ensemble Uncertainty:

o Perturb fluxes to the channel and groundwater bucket
o Multi-configuration ensemble; perturb 6 channel parameters
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2.2 Enhancements to the DA System

1. Forcing and Ensemble Uncertainty:

2. Adaptive Inflation:
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2.2 Enhancements to the DA System

1. Forcing and Ensemble Uncertainty:
2. Adaptive Inflation:

o Tackle variance underestimation due to sampling errors and model biases
o Spatially and Temporally varying algorithm [El Gharamti 2018; MWR]
o Inflation assumed a random variable; updated using the data
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2.2 Enhancements to the DA System

1. Forcing and Ensemble Uncertainty:
2. Adaptive Inflation:

3. Gaussian Anamorphosis:
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2.2 Enhancements to the DA System

1. Forcing and Ensemble Uncertainty:

2. Adaptive Inflation:

3. Gaussian Anamorphosis:

o Streamflow is a positive quantity = non-Gaussian

o A variable transform during the update
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2.2 Enhancements to the DA System

1. Forcing and Ensemble Uncertainty:

2. Adaptive Inflation:

3. Gaussian Anamorphosis:

4. Along-The-Stream (ATS) Localization:
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2.2 Enhancements to the DA System

1. Forcing and Ensemble Uncertainty:
2. Adaptive Inflation:

3. Gaussian Anamorphosis:
4. Along-The-Stream (ATS) Localization:

o Small ensemble sizes produce imperfect sample covariances

o Taper spurious correlations
o Channel routing model: unstructured grid (stream network)
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2.3.1 Along-The-Stream (ATS) Localization

10— f0)
Xk =Xk

(@)

+ an 0<ax<l1 (Localization Factor)

O ATS localization [El Gharamti et al., 2020; HESS] aims to mitigate not only
spurious correlations but also physically incorrect correlations
between unconnected state variables in the river network

O 2reaches could be physically close but unrelated (particularly through
error correlations) if they belong to different catchments/basins
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2.3.1 Along-The-Stream (ATS) Localization
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O ATS localization [El Gharamti et al., 2020; HESS] aims to mitigate not only

spurious correlations but also physically incorrect correlations
between unconnected state variables in the river network

O 2reaches could be physically close but unrelated (particularly through
error correlations) if they belong to different catchments/basins
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2.3.1 Along-The-Stream (ATS) Localization
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2.3.1 Along-The-Stream (ATS) Localization
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1. Downstream from a gauge, information flows only downstream (tree-like shapes)
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2.3.1 Along-The-Stream (ATS) Localization
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0. Reaches only upstream and downstream from a gauge are impacted

1. Downstream from a gauge, information flows only downstream (tree-like shapes)

2. Total number of close reaches depend on the size of the basin
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2.3.1 Along-The-Stream (ATS) Localization

0<ax<l1 (Localization Factor)

0. Reaches only upstream and downstream from a gauge are impacted
1. Downstream from a gauge, information flows only downstream (tree-like shapes)
2. Total number of close reaches depend on the size of the basin

3. Observations in different catchments do not have common close reaches

ATS Localization (G-C: 100 km) , _ATS Localization (G-
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2.3.2 Does regular localization even work?

ATS  Reg20 Regi1o Regs Reg2  Reg1

€ - Prior RMSE 1854 886 3346 34.32

RS

Es O§ Posterior RMSE 17.82 6.75 25.11 33.66| 26.41

® d . . - _ _ - _ _

; S Prior Bias 11.65 1.71 18.09  -11.07

& z  Posterior Bias -0.85  -11.41 -17.16  -10.01

E‘ Z Prior Spread 1.20 3.29 2.80 10.90 10.84 9.54
Posterior Spread 1.55 3.00 2.27 6.28 6.43 5.17

O Performance using ATS localization is significantly better (~ 40%)
O Using ATS, one can increase the effective localization radius

O Regular localization with large radii fails (correlating physically
unrelated variables)
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2.3.2 Does regular localization even work?

Tar River at Tarboro, NC (NWIS 02083500)
ATS Localization (100 km) Regular Localization (1 km)
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O Performance using ATS localization is significantly better (~ 40%)
O Using ATS, one can increase the effective localization radius

O Regular localization with large radii fails (correlating physically
unrelated variables)
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2.3.2 Does regular localization even work?

Tar River at Tarboro, NC (NWIS 02083500)
ATS Localization (100 km) o Regular Localization (2 km)
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O Performance using ATS localization is significantly better (~ 40%)
O Using ATS, one can increase the effective localization radius

O Regular localization with large radii fails (correlating physically
unrelated variables)
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2.3.2 Does regular localization even work?

Stream flow (cms)
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O Performance using ATS localization is significantly better (~ 40%)

O Using ATS, one can increase the effective localization radius

O Regular localization with large radii fails (correlating physically

unrelated variables)
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O Performance using ATS localization is significantly better (~ 40%)

O Using ATS, one can increase the effective localization radius

O Regular localization with large radii fails (correlating physically

unrelated variables)
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O Performance using ATS localization is significantly better (~ 40%)

O Using ATS, one can increase the effective localization radius

O Regular localization with large radii fails (correlating physically

unrelated variables)
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2.3.3 Tuning ATS Localization; [i] Radius

A. Dan River at Paces

1000

x  Obs
~-=-no DA, 115.1
—— 50 km, 59.6
—— 75 km, 82.0
—— 100 km, 47.8 |4
—— 150 km, 56.3

—— 200 km, 885 | |

“._|[——200km, 9.2
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B. Tar River at Rocky Mount
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D. Deep River at Moncure

x  Obs
2 —-=-no DA, 147.5

——50 km, 46.7
——75km, 37.1
—— 100 km, 29.4
—— 150 km, 58.8
—— 200 km, 40.1

O Test with different localization radii: 50, 75, 100, 150, 200 km

O Larger radii degrade the accuracy (giving rise to spurious correlations)

O Smaller radii limit the amount of useful information

O Best performance with 100 km
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2.3.4 Tuning ATS Localization; [ii] Correlation Function

o @ Gaspari-Cohn
@ Boxcar
@® Ramped-Boxcar
NS o
~ R O, .
- ) . % O Averaging over all gauges,
N 7 . . .
©| 200 100 0 100 200 \\ OOOO the correlation coefficient

was: Gaspari-Cohn (0.83),
Boxcar (0.77) and
Ramped-Boxcar (0.79)

Standard Deviation

O Gaspari-Cohn outperforms
other functions

1 0.75 0.5 0.25
Centered Root Mean Square Error
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3.1 Summary

O HydroDART is a state-of-the-art streamflow prediction system
that couples WRF-Hydro and DART

Provides hourly skillful streamflow estimates

Enhanced ensemble uncertainty assessment

Introduces Along-The-Stream localization

Supports a variety of DA algorithms: e.g., Adaptive Inflation

LNl

Supports parameter (model + hyper) estimation

O ATS Localization:

1. Topological localization scheme that adheres to the river network
2. Improves information propagation (eliminates error covariances
between unconnected streams)
3. Produces significantly better results than regular Euclidean
distance-based approach
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3.1 Summary

O HydroDART is a state-of-the-art streamflow prediction system
that couples WRF-Hydro and DART

Provides hourly skillful streamflow estimates

Enhanced ensemble uncertainty assessment

Introduces Along-The-Stream localization

Supports a variety of DA algorithms: e.g., Adaptive Inflation

LNl

Supports parameter (model + hyper) estimation

https://github.com/NCAR/wrf_hydro_nwm_public
https://github.com/NCAR/wrf_hydro_dart
https://github.com/NCAR/DART
O ATS Localization:
1. Topological localization scheme that adheres to the river network
2. Improves information propagation (eliminates error covariances
between unconnected streams)
3. Produces significantly better results than regular Euclidean
distance-based approach
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O Full CONUS streamflow
reanalysis for the past 30 years: |
— Explore hybrid EnKF-OI
approaches:

Adaptive: [El Gharamti 2021; MWR]
Analogs: [Grooms 2021; QJRMS]

3.2 Future Research Directions
{ T 7 /ré‘
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O A collaborative project with USGS; 2 main goals:

1. Assimilate gauge temperature data (investigate effects on streamflow)
2. Placement of gauges (OSSE studies)
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3.2 Future Research Directions

O Full CONUS streamflow
reanalysis for the past 30 years: |z
— Explore hybrid EnKF-OI
approaches:

Adaptive: [El Gharamti 2021; MWR]
Analogs: [Grooms 2021; QJRMS]

O A collaborative project with USGS; 2 main goals:

1. Assimilate gauge temperature data (investigate effects on streamflow)
2. Placement of gauges (OSSE studies)

O Coupling the LSM with WRF-Hydro:

1. Assimilate soil moisture & streamflow; weak vs strong coupling
2. Assimilate snow data (thickness, SWE, ...)
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Bias Mitigation
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Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
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After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina

Hydrograph: Rocky River near Norwood, SC
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Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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Bias Mitigation

After landfall, the model’s streamflow

prediction (Open Loop) is significantly

smaller than the posterior along Pee-Dee

River in South Carolina

Hydrograph: Rocky‘ River near Norwood, SC
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Bias Mitigation

After landfall, the model’s streamflow A sizable increase in prior
prediction (Open Loop) is significantly inflation to counter the bias
smaller than the posterior along Pee-Dee in the modeled streamflow!

River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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Bias Mitigation

The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

o Pee Dee River near Bennettswlle, SC (NWIS 021 305561)
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The rank histogram for the open loop is heavily skewed to the right
indicating that the gauge data is larger than the ensemble

Pee Dee River near Bennettswlle, SC (NWIS 021 305561)
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